Atnaujinkite slapukų nuostatas

Stats: Data and Models, Global Edition -- MyLab Statistics with Pearson eText 5th edition [Digital product license key]

  • Formatas: Digital product license key, 4 pages, aukštis x plotis x storis: 165x126x1 mm, weight: 9 g
  • Išleidimo metai: 23-May-2023
  • Leidėjas: Pearson Education Limited
  • ISBN-10: 1292401958
  • ISBN-13: 9781292401959
Kitos knygos pagal šią temą:
  • Formatas: Digital product license key, 4 pages, aukštis x plotis x storis: 165x126x1 mm, weight: 9 g
  • Išleidimo metai: 23-May-2023
  • Leidėjas: Pearson Education Limited
  • ISBN-10: 1292401958
  • ISBN-13: 9781292401959
Kitos knygos pagal šią temą:
Preface

Index of Applications

 

I: EXPLORING AND UNDERSTANDING DATA

 

1. Stats Starts Here 

1.1 What Is Statistics?  1.2 Data  1.3 Variables  1.4 Models

 

2. Displaying and Describing Data

2.1 Summarizing and Displaying a Categorical Variable  2.2 Displaying a
Quantitative Variable  2.3 Shape  2.4 Center  2.5 Spread 

 

3. Relationships Between Categorical VariablesContingency Tables

3.1 Contingency Tables  3.2 Conditional Distributions  3.3 Displaying
Contingency Tables  3.4 Three Categorical Variables

 

4. Understanding and Comparing Distributions

4.1 Displays for Comparing Groups  4.2 Outliers  4.3 Re-Expressing Data: A
First Look

 

5. The Standard Deviation as a Ruler and the Normal Model

5.1 Using the Standard Deviation to Standardize Values  5.2 Shifting and
Scaling  5.3 Normal Models  5.4 Working with Normal Percentiles  5.5 Normal
Probability Plots

 

Review of Part I: Exploring and Understanding Data

 

II. EXPLORING RELATIONSHIPS BETWEEN VARIABLES

 

6. Scatterplots, Association, and Correlation

6.1 Scatterplots 6.2 Correlation 6.3 Warning: Correlation Causation *6.4
Straightening Scatterplots

 

7. Linear Regression

7.1 Least Squares: The Line of Best Fit 7.2 The Linear Model 7.3 Finding
the Least Squares Line 7.4 Regression to the Mean 7.5 Examining the Residuals
7.6 R2The Variation Accounted for by the Model  7.7 Regression Assumptions
and Conditions

 

8. Regression Wisdom

8.1 Examining Residuals  8.2 Extrapolation: Reaching Beyond the Data  8.3
Outliers, Leverage, and Influence  8.4 Lurking Variables and Causation  8.5
Working with Summary Values  *8.6 Straightening ScatterplotsThe Three Goals
 *8.7 Finding a Good Re-Expression

 

9. Multiple Regression

9.1 What Is Multiple Regression?  9.2 Interpreting Multiple Regression
Coefficients  9.3 The Multiple Regression ModelAssumptions and Conditions
 9.4 Partial Regression Plots  *9.5 Indicator Variables 

 

Review of Part II: Exploring Relationships Between Variables 

 

III. GATHERING DATA

 

10. Sample Surveys

10.1 The Three Big Ideas of Sampling  10.2 Populations and Parameters  10.3
Simple Random Samples  10.4 Other Sampling Designs  10.5 From the Population
to the Sample: You Can't Always Get What You Want  10.6 The Valid Survey 10.7
Common Sampling Mistakes, or How to Sample Badly

 

11. Experiments and Observational Studies11.1  Observational Studies  11.2
Randomized, Comparative Experiments  11.3 The Four Principles of Experimental
Design 11.4 Control Groups  11.5 Blocking  11.6 Confounding

 

Review of Part III: Gathering Data

 

IV. RANDOMNESS AND PROBABILITY 

 

12. From Randomness to Probability

12.1 Random Phenomena  12.2 Modeling Probability  12.3 Formal Probability

 

13.Probability Rules!

13.1 The General Addition Rule  13.2 Conditional Probability and the General
Multiplication Rule  13.3 Independence  13.4 Picturing Probability: Tables,
Venn Diagrams, and Trees  13.5 Reversing the Conditioning and Bayes' Rule

 

14. Random Variables

14.1 Center: The Expected Value  14.2 Spread: The Standard Deviation  14.3
Shifting and Combining Random Variables  14.4 Continuous Random Variables

 

15. Probability Models

15.1 Bernoulli Trials  15.2 The Geometric Model  15.3 The Binomial Model 
15.4 Approximating the Binomial with a Normal Model  15.5 The Continuity
Correction  15.6 The Poisson Model  15.7 Other Continuous Random Variables:
The Uniform and the Exponential

 

Review of Part IV: Randomness and Probability  

V. INFERENCE FOR ONE PARAMETER 

 

16. Sampling Distribution Models and Confidence Intervals for Proportions

16.1 The Sampling Distribution Model for a Proportion  16.2 When Does the
Normal Model Work? Assumptions and Conditions  16.3 A Confidence Interval for
a Proportion  16.4 Interpreting Confidence Intervals: What Does 95%
Confidence Really Mean? 16.5 Margin of Error: Certainty vs. Precision  *16.6
Choosing the Sample Size

 

17. Confidence Intervals for Means

17.1 The Central Limit Theorem  17.2 A Confidence Interval for the Mean
 17.3 Interpreting Confidence Intervals  *17.4 Picking Our Interval up by Our
Bootstraps  17.5 Thoughts About Confidence Intervals

 

18. Testing Hypotheses

18.1 Hypotheses 18.2 P-Values  18.3 The Reasoning of Hypothesis Testing
 18.4 A Hypothesis Test for the Mean  18.5 Intervals and Tests  18.6 P-Values
and Decisions: What to Tell About a Hypothesis Test

 

19. More About Tests and Intervals

19.1 Interpreting P-Values  19.2 Alpha Levels and Critical Values  19.3
Practical vs. Statistical Significance  19.4 Errors

 

Review of Part V: Inference for One Parameter

 

VI. INFERENCE FOR RELATIONSHIPS

 

20. Comparing Groups

20.1 A Confidence Interval for the Difference Between Two Proportions  20.2
Assumptions and Conditions for Comparing Proportions  20.3 The
Two-Sample z-Test: Testing for the Difference Between Proportions 20.4 A
Confidence Interval for the Difference Between Two Means 20.5 The
Two-Sample t-Test: Testing for the Difference Between Two Means *20.6
Randomization Tests and Confidence Intervals for Two Means *20.7 Pooling
 *20.8 The Standard Deviation of a Difference 

 

21. Paired Samples and Blocks

21.1 Paired Data  21.2 The Paired t-Test  21.3 Confidence Intervals for
Matched Pairs  21.4 Blocking

 

22. Comparing Counts

22.1 Goodness-of-Fit Tests  22.2 Chi-Square Test of Homogeneity  22.3
Examining the Residuals  22.4 Chi-Square Test of Independence 

 

23. Inferences for Regression

23.1 The Regression Model  23.2 Assumptions and Conditions  23.3 Regression
Inference and Intuition  23.4 The Regression Table  23.5 Multiple Regression
Inference  23.6 Confidence and Prediction Intervals  *23.7 Logistic
Regression  *23.8 More About Regression

 

Review of Part VI: Inference for Relationships

 

VII. INFERENCE WHEN VARIABLES ARE RELATED  

24. Multiple Regression Wisdom

24.1 Multiple Regression Inference  24.2 Comparing Multiple Regression Model
 24.3 Indicators  24.4 Diagnosing Regression Models: Looking at the Cases
 24.5 Building Multiple Regression Models

 

25. Analysis of Variance

25.1 Testing Whether the Means of Several Groups Are Equal  25.2 The ANOVA
Table  25.3 Assumptions and Conditions  25.4 Comparing Means  25.5 ANOVA on
Observational Data

 

26. Multifactor Analysis of Variance

26.1 A Two Factor ANOVA Model   26.2 Assumptions and Conditions  26.3
Interactions

 

27. Statistics and Data Science

27.1 Introduction to Data Mining

 

Review of Part VII: Inference When Variables Are Related

 

Parts IV Cumulative Review Exercises

 

Appendixes:

A. Answers 

B. Credits 

C. Indexes 

D. Tables and Selected Formulas