Atnaujinkite slapukų nuostatas

Stochastic PDEs and Dynamics [Kietas viršelis]

  • Formatas: Hardback, 228 pages, aukštis x plotis: 240x170 mm, weight: 561 g, 10 Tables, black and white; 30 Illustrations, black and white
  • Išleidimo metai: 21-Nov-2016
  • Leidėjas: De Gruyter
  • ISBN-10: 3110495104
  • ISBN-13: 9783110495102
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 228 pages, aukštis x plotis: 240x170 mm, weight: 561 g, 10 Tables, black and white; 30 Illustrations, black and white
  • Išleidimo metai: 21-Nov-2016
  • Leidėjas: De Gruyter
  • ISBN-10: 3110495104
  • ISBN-13: 9783110495102
Kitos knygos pagal šią temą:
This book explains mathematical theories of a collection of stochastic partial differential equations and their dynamical behaviors. Based on probability and stochastic process, the authors discuss stochastic integrals, Ito formula and Ornstein-Uhlenbeck processes, and introduce theoretical framework for random attractors. With rigorous mathematical deduction, the book is an essential reference to mathematicians and physicists in nonlinear science.

Contents: Preliminaries The stochastic integral and Itō formula OU processes and SDEs Random attractors Applications Bibliography Index
Table of Content:
Chapter 1 Preliminaries
1.1 Preliminaries in probability
1.2 Preliminaries of stochastic process
1.3 Martingale
1.4 Wiener process and Brown motion
1.5 Poisson process
1.6 Levy process
1.7 The fractional Brownian motion
Chapter 2 The stochastic integral and Ito formula
2.1 Stochastic integral
2.2 Ito formula
2.3 The infnite dimensional case
2.4 Nuclear operator and Hilbert-Schmidt operator
Chapter 3 OU processes and SDEs
3.1 Ornstein-Uhlenbeck processes
3.2 Linear SDEs
3.3 Nonlinear SDEs
Chapter 4 Random attractors
4.1 Determinate nonautonomous systems
4.2 Stochastic dynamical systems
Chapter 5 Applications
5.1 Stochastic Ginzburg-Landau equation
5.2 Ergodicity for SGL with degenerate noise
5.3 Stochastic damped forced Ostrovsky equation
5.4 Simplifed quasi geostrophic model
5.5 Stochastic primitive equations
References
Boling Guo, Inst. of Applied Physics & Computational Maths; Hongjun Gao, Nanjing Normal Univ.; Xueke Pu, Chongqing Univ., China.