Introduction |
|
xxi | |
|
|
1 | (68) |
|
|
3 | (22) |
|
1.1 Lost in the Great Sloan Wall |
|
|
3 | (3) |
|
1.2 Meeting Alice in Wonderland |
|
|
6 | (1) |
|
1.3 The lucky MIT Blackjack Team |
|
|
7 | (3) |
|
1.4 Kruskal's magic trap card |
|
|
10 | (2) |
|
1.5 The magic fern from Daisetsuzan |
|
|
12 | (3) |
|
|
15 | (2) |
|
|
17 | (4) |
|
|
21 | (4) |
|
|
25 | (18) |
|
2.1 Stabilizing populations ... |
|
|
25 | (3) |
|
2.2 The traps of reinforcement |
|
|
28 | (3) |
|
|
31 | (3) |
|
2.4 Surfing Google's waves |
|
|
34 | (2) |
|
|
36 | (1) |
|
|
37 | (6) |
|
3 Computational and theoretical aspects |
|
|
43 | (26) |
|
3.1 From Monte Carlo to Los Alamos |
|
|
43 | (2) |
|
3.2 Signal processing and population dynamics |
|
|
45 | (4) |
|
|
49 | (7) |
|
3.4 Towards a general theory |
|
|
56 | (4) |
|
3.5 The theory of speculation |
|
|
60 | (6) |
|
|
66 | (3) |
|
|
69 | (50) |
|
|
71 | (6) |
|
|
71 | (3) |
|
|
74 | (1) |
|
|
75 | (2) |
|
44 Sampling probabilities |
|
|
77 | (22) |
|
|
77 | (2) |
|
4.4.2 Laplace's rule of successions |
|
|
79 | (1) |
|
4.4.3 Fragmentation and coagulation |
|
|
79 | (1) |
|
4.5 Conditional probabilities |
|
|
80 | (5) |
|
|
80 | (1) |
|
4.5.2 The regression formula |
|
|
81 | (1) |
|
|
82 | (2) |
|
|
84 | (1) |
|
4.6 Spatial Poisson point processes |
|
|
85 | (7) |
|
4.6.1 Some preliminary results |
|
|
85 | (3) |
|
4.6.2 Conditioning principles |
|
|
88 | (3) |
|
4.6.3 Poisson-Gaussian clusters |
|
|
91 | (1) |
|
|
92 | (7) |
|
5 Monte Carlo integration |
|
|
99 | (8) |
|
|
99 | (3) |
|
|
102 | (2) |
|
5.2.1 Twisted distributions |
|
|
102 | (1) |
|
5.2.2 Sequential Monte Carlo |
|
|
102 | (1) |
|
5.2.3 Tails distributions |
|
|
103 | (1) |
|
|
104 | (3) |
|
|
107 | (12) |
|
|
107 | (1) |
|
|
108 | (1) |
|
6.3 Black-box type models |
|
|
108 | (2) |
|
6.4 Boltzmann-Gibbs measures |
|
|
110 | (3) |
|
|
110 | (1) |
|
6.4.2 Sherrington-Kirkpatrick model |
|
|
111 | (1) |
|
6.4.3 The traveling salesman model |
|
|
111 | (2) |
|
6.5 Filtering and statistical learning |
|
|
113 | (2) |
|
|
113 | (1) |
|
6.5.2 Singer's radar model |
|
|
114 | (1) |
|
|
115 | (4) |
|
III Discrete time processes |
|
|
119 | (178) |
|
|
121 | (20) |
|
7.1 Description of the models |
|
|
121 | (1) |
|
7.2 Elementary transitions |
|
|
122 | (1) |
|
7.3 Markov integral operators |
|
|
123 | (1) |
|
|
124 | (1) |
|
|
125 | (1) |
|
7.6 Random dynamical systems |
|
|
126 | (2) |
|
7.6.1 Linear Markov chain model |
|
|
126 | (1) |
|
7.6.2 Two-states Markov models |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
128 | (1) |
|
7.9 General state space models |
|
|
129 | (3) |
|
7.10 Nonlinear Markov chains |
|
|
132 | (6) |
|
7.10.1 Self interacting processes |
|
|
132 | (2) |
|
7.10.2 Mean field particle models |
|
|
134 | (1) |
|
7.10.3 McKean-Vlasov diffusions |
|
|
135 | (1) |
|
7.10.4 Interacting jump processes |
|
|
136 | (2) |
|
|
138 | (3) |
|
|
141 | (80) |
|
|
141 | (4) |
|
8.1.1 Diagonalisation type techniques |
|
|
141 | (2) |
|
8.1.2 Perron Frobenius theorem |
|
|
143 | (2) |
|
|
145 | (21) |
|
8.2.1 Spectral decompositions |
|
|
145 | (4) |
|
8.2.2 Total variation norms |
|
|
149 | (3) |
|
8.2.3 Contraction inequalities |
|
|
152 | (4) |
|
|
156 | (1) |
|
|
156 | (4) |
|
8.2.0 Geometric drift conditions |
|
|
160 | (4) |
|
8.2.7 V-norm contractions |
|
|
164 | (2) |
|
|
166 | (12) |
|
8.3.1 Coupling techniques |
|
|
166 | (1) |
|
8.3.1.1 The total variation distance |
|
|
166 | (3) |
|
8.3.1.2 Wasserstein metric |
|
|
169 | (3) |
|
8.3.2 Stopping times and coupling |
|
|
172 | (1) |
|
8.3.3 Strong stationary times |
|
|
173 | (1) |
|
|
174 | (1) |
|
8.3.4.1 Minorization condition and coupling |
|
|
174 | (2) |
|
8.3.4.2 Markov chains on complete graphs |
|
|
176 | (1) |
|
8.3.4.3 A Kruskal random walk |
|
|
177 | (1) |
|
|
178 | (25) |
|
|
178 | (5) |
|
8.4.2 Applications to Markov chains |
|
|
183 | (1) |
|
8.4.2.1 Martingales with fixed terminal values |
|
|
183 | (1) |
|
8.4.2.2 Doeblin-Ito formula |
|
|
184 | (1) |
|
8.4.2.3 Occupation measures |
|
|
185 | (2) |
|
8.4.3 Optional stopping theorems |
|
|
187 | (4) |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
193 | (1) |
|
8.4.5 Maximal inequalities |
|
|
194 | (2) |
|
|
196 | (7) |
|
|
203 | (9) |
|
8.5.1 Irreducibility and aperiodicity |
|
|
203 | (3) |
|
8.5.2 Recurrent and transient states |
|
|
206 | (4) |
|
8.5.3 Continuous state spaces |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
212 | (9) |
|
|
221 | (76) |
|
9.1 A weak ergodic theorem |
|
|
221 | (3) |
|
|
224 | (2) |
|
9.2.1 Parameter estimation |
|
|
224 | (1) |
|
9.2.2 Gaussian subset shaker |
|
|
225 | (1) |
|
9.2.3 Exploration of the unit disk |
|
|
226 | (1) |
|
9.3 Markov Chain Monte Carlo methods |
|
|
226 | (10) |
|
|
226 | (1) |
|
9.3.2 Metropolis and Hastings models |
|
|
227 | (2) |
|
9.3.3 Gibbs-Glauber dynamics |
|
|
229 | (4) |
|
9.3.4 Propp and Wilson sampler |
|
|
233 | (3) |
|
9.4 Time inhoinogeneous MCMC models |
|
|
236 | (3) |
|
9.4.1 Simulated annealing algorithm |
|
|
236 | (1) |
|
9.4.2 A perfect sampling algorithm |
|
|
237 | (2) |
|
9.5 Feynman-Kac path integration |
|
|
239 | (13) |
|
9.5.1 Weighted Markov chains |
|
|
239 | (1) |
|
9.5.2 Evolution equations |
|
|
240 | (2) |
|
9.5.3 Particle absorption models |
|
|
242 | (2) |
|
|
244 | (1) |
|
9.5.5 Quasi-invariant measures |
|
|
245 | (2) |
|
9.5.6 Cauchy problems with terminal conditions |
|
|
247 | (1) |
|
9.5.7 Dirichlet-Poisson problems |
|
|
248 | (2) |
|
9.5.8 Cauchy-Dirichlet-Poisson problems |
|
|
250 | (2) |
|
9.6 Feynman-Kac particle methodology |
|
|
252 | (8) |
|
9.6.1 Mean field genetic type particle models |
|
|
252 | (2) |
|
|
254 | (1) |
|
9.6.3 Backward integration |
|
|
255 | (2) |
|
9.6.4 A random particle matrix model |
|
|
257 | (1) |
|
9.6.5 A conditional formula for ancestral trees |
|
|
258 | (2) |
|
9.7 Particle Markov chain Monte Carlo methods |
|
|
260 | (7) |
|
9.7.1 Many-body Feynman-Kac measures |
|
|
260 | (1) |
|
9.7.2 A particle Metropolis-Hastings model |
|
|
261 | (1) |
|
9.7.3 Duality formulae for many-body models |
|
|
262 | (4) |
|
9.7.4 A couple particle Gibbs samplers |
|
|
266 | (1) |
|
9.8 Quenched and annealed measures |
|
|
267 | (5) |
|
|
267 | (2) |
|
9.8.2 Particle Gibbs models |
|
|
269 | (2) |
|
9.8.3 Particle Metropolis-Hastings models |
|
|
271 | (1) |
|
9.9 Some application domains |
|
|
272 | (14) |
|
9.9.1 Interacting MCMC algorithms |
|
|
272 | (4) |
|
9.9.2 Nonlinear filtering models |
|
|
276 | (1) |
|
9.9.3 Markov chain restrictions |
|
|
276 | (1) |
|
9.9.4 Self avoiding walks |
|
|
277 | (2) |
|
9.9.5 Twisted measure importance sampling |
|
|
279 | (1) |
|
9.9.6 Kalman-Bucy filters |
|
|
280 | (1) |
|
|
280 | (1) |
|
|
281 | (2) |
|
9.9.6.3 Ensemble Kaiman filters |
|
|
283 | (2) |
|
9.9.6.4 Interacting Kaiman filters |
|
|
285 | (1) |
|
|
286 | (11) |
|
IV Continuous time processes |
|
|
297 | (236) |
|
|
299 | (14) |
|
|
299 | (1) |
|
|
300 | (1) |
|
10.3 Uniform random times |
|
|
301 | (1) |
|
|
302 | (2) |
|
|
304 | (2) |
|
10.6 Time inhomogeneous models |
|
|
306 | (5) |
|
10.6.1 Description of the models |
|
|
306 | (3) |
|
10.6.2 Poisson thinning simulation |
|
|
309 | (1) |
|
10.6.3 Geometric random clocks |
|
|
309 | (2) |
|
|
311 | (2) |
|
11 Markov chain embeddings |
|
|
313 | (24) |
|
11.1 Homogeneous embeddings |
|
|
313 | (4) |
|
11.1.1 Description of the models |
|
|
313 | (1) |
|
11.1.2 Semigroup evolution equations |
|
|
314 | (3) |
|
|
317 | (5) |
|
11.2.1 A two-state Markov process |
|
|
317 | (1) |
|
11.2.2 Matrix valued equations |
|
|
318 | (2) |
|
11.2.3 Discrete Laplacian |
|
|
320 | (2) |
|
11.3 Spatially inhomogeneous models |
|
|
322 | (7) |
|
11.3.1 Explosion phenomenon |
|
|
324 | (4) |
|
11.3.2 Finite state space models |
|
|
328 | (1) |
|
11.4 Time inhomogeneous models |
|
|
329 | (3) |
|
11.4.1 Description of the models |
|
|
329 | (2) |
|
11.4.2 Poisson thinning models |
|
|
331 | (1) |
|
11.4.3 Exponential and geometric clocks |
|
|
332 | (1) |
|
|
332 | (5) |
|
|
337 | (26) |
|
12.1 A class of pure jump models |
|
|
337 | (1) |
|
12.2 Semigroup evolution equations |
|
|
338 | (2) |
|
12.3 Approximation schemes |
|
|
340 | (2) |
|
|
342 | (2) |
|
12.5 Doob-Meyer decompositions |
|
|
344 | (6) |
|
12.5.1 Discrete time models |
|
|
344 | (2) |
|
12.5.2 Continuous time martingales |
|
|
346 | (3) |
|
12.5.3 Optional stopping theorems |
|
|
349 | (1) |
|
12.6 Doeblin-Ito-Taylor formulae |
|
|
350 | (1) |
|
12.7 Stability properties |
|
|
351 | (5) |
|
12.7.1 Invariant measures |
|
|
351 | (2) |
|
12.7.2 Dobrushin contraction properties |
|
|
353 | (3) |
|
|
356 | (7) |
|
13 Piecewise deterministic processes |
|
|
363 | (30) |
|
13.1 Dynamical systems basics |
|
|
363 | (4) |
|
13.1.1 Semigroup and flow maps |
|
|
363 | (3) |
|
13.1.2 Time discretization schemes |
|
|
366 | (1) |
|
13.2 Piecewise deterministic jump models |
|
|
367 | (10) |
|
13.2.1 Excursion valued Markov chains |
|
|
367 | (2) |
|
13.2.2 Evolution semigroups |
|
|
369 | (2) |
|
13.2.3 Infinitesimal generators |
|
|
371 | (1) |
|
13.2.4 Fokker-Planck equation |
|
|
372 | (1) |
|
13.2.5 A time discretization scheme |
|
|
373 | (3) |
|
13.2.6 Doeblin-Ito-Taylor formulae |
|
|
376 | (1) |
|
13.3 Stability properties |
|
|
377 | (2) |
|
13.3.1 Switching processes |
|
|
377 | (2) |
|
13.3.2 Invariant measures |
|
|
379 | (1) |
|
13.4 An application to Internet architectures |
|
|
379 | (5) |
|
13.4.1 The transmission control protocol |
|
|
379 | (2) |
|
13.4.2 Regularity and stability properties |
|
|
381 | (2) |
|
13.4.3 The limiting distribution |
|
|
383 | (1) |
|
|
384 | (9) |
|
|
393 | (32) |
|
|
393 | (8) |
|
14.1.1 Discrete vs continuous time models |
|
|
393 | (2) |
|
14.1.2 Evolution semigroups |
|
|
395 | (2) |
|
|
397 | (1) |
|
14.1.4 Doeblin-Ito-Taylor formula |
|
|
398 | (3) |
|
14.2 Stochastic differential equations |
|
|
401 | (4) |
|
14.2.1 Diffusion processes |
|
|
401 | (1) |
|
14.2.2 Doeblin-Ito differential calculus |
|
|
402 | (3) |
|
|
405 | (4) |
|
14.3.1 Fokker-Planck equation |
|
|
405 | (1) |
|
11.3.2 Weak approximation processes |
|
|
406 | (2) |
|
11.3.3 A backward stochastic differential equation |
|
|
408 | (1) |
|
14.4 Multidimensional diffusions |
|
|
409 | (4) |
|
14.4.1 Multidimensional stochastic differential equations |
|
|
409 | (2) |
|
14.4.2 An integration by parts formula |
|
|
411 | (1) |
|
14.1.3 Laplacian and orthogonal transformations |
|
|
412 | (1) |
|
14.4.4 Fokker-Planck equation |
|
|
413 | (1) |
|
|
413 | (12) |
|
15 Jump diffusion processes |
|
|
425 | (38) |
|
15.1 Piecewise diffusion processes |
|
|
425 | (1) |
|
15.2 Evolution semigroups |
|
|
426 | (2) |
|
|
428 | (5) |
|
15.4 Fokker-Planck equation |
|
|
433 | (1) |
|
15.5 An abstract class of stochastic processes |
|
|
434 | (5) |
|
15.5.1 Generators and carre du champ operators |
|
|
434 | (3) |
|
15.5.2 Perturbation formulae |
|
|
437 | (2) |
|
15.6 Jump diffusion processes with killing |
|
|
439 | (11) |
|
15.6.1 Feymnan-Kac semigroups |
|
|
439 | (1) |
|
15.6.2 Cauchy problems with terminal conditions |
|
|
440 | (2) |
|
15.6.3 Dirichlet-Poisson problems |
|
|
442 | (5) |
|
15.6.4 Cauchy-Dirichlet-Poisson problems |
|
|
447 | (3) |
|
|
450 | (1) |
|
15.7.1 One-dimensional Dirichlet-Poisson problems |
|
|
450 | (1) |
|
15.7.2 A backward stochastic differential equation |
|
|
451 | (1) |
|
|
451 | (12) |
|
16 Nonlinear jump diffusion processes |
|
|
463 | (18) |
|
16.1 Nonlinear Markov processes |
|
|
463 | (5) |
|
16.1.1 Pure diffusion models |
|
|
463 | (1) |
|
|
464 | (2) |
|
16.1.3 Feymnan-Kac jump type models |
|
|
466 | (1) |
|
16.1.4 A jump type Langevin model |
|
|
467 | (1) |
|
16.2 Mean field particle models |
|
|
468 | (2) |
|
16.3 Some application domains |
|
|
470 | (4) |
|
16.3.1 Fouque-Sun systemic risk model |
|
|
470 | (1) |
|
|
471 | (1) |
|
16.3.3 Langevin-McKean-Vlasov model |
|
|
472 | (1) |
|
|
473 | (1) |
|
|
474 | (7) |
|
17 Stochastic analysis toolbox |
|
|
481 | (20) |
|
|
481 | (1) |
|
17.2 Stability properties |
|
|
482 | (1) |
|
|
483 | (2) |
|
17.3.1 Gradient flow processes |
|
|
483 | (1) |
|
17.3.2 One-dimensional diffusions |
|
|
484 | (1) |
|
17.4 Foster-Lyapunov techniques |
|
|
485 | (2) |
|
17.4.1 Contraction inequalities |
|
|
485 | (1) |
|
17.4.2 Minorization properties |
|
|
486 | (1) |
|
|
487 | (3) |
|
17.5.1 Ornstein-Uhlenbeck processes |
|
|
487 | (1) |
|
17.5.2 Stochastic gradient processes |
|
|
487 | (1) |
|
17.5.3 Langevin diffusions |
|
|
488 | (2) |
|
|
490 | (5) |
|
17.6.1 Hilbert spaces and Schauder bases |
|
|
490 | (3) |
|
17.6.2 Spectral decompositions |
|
|
493 | (1) |
|
17.6.3 Poincare inequality |
|
|
494 | (1) |
|
|
495 | (6) |
|
|
501 | (32) |
|
|
501 | (6) |
|
18.1.1 Likelihood functionals |
|
|
504 | (1) |
|
18.1.2 Girsanov's transformations |
|
|
505 | (1) |
|
18.1.3 Exponential martingales |
|
|
506 | (1) |
|
|
507 | (5) |
|
|
507 | (1) |
|
18.2.2 Path space diffusions |
|
|
508 | (1) |
|
18.2.3 Girsanov transformations |
|
|
509 | (3) |
|
18.3 Exponential change twisted measures |
|
|
512 | (2) |
|
18.3.1 Diffusion processes |
|
|
513 | (1) |
|
18.3.2 Pure jump processes |
|
|
514 | (1) |
|
|
514 | (3) |
|
18.4.1 Risk neutral financial markets |
|
|
514 | (1) |
|
|
514 | (1) |
|
18.4.1.2 Diffusion markets |
|
|
515 | (1) |
|
18.4.2 Elliptic diffusions |
|
|
516 | (1) |
|
|
517 | (10) |
|
18.5.1 Diffusion observations |
|
|
517 | (1) |
|
18.5.2 Dunean-Zakai equation |
|
|
518 | (2) |
|
18.5.3 Kushner-Stratonovitch equation |
|
|
520 | (1) |
|
18.5.4 Kalman-Bucy filters |
|
|
521 | (2) |
|
18.5.5 Nonlinear diffusion and ensemble Kalman-Bucy filters |
|
|
523 | (1) |
|
18.5.0 Robust filtering equations |
|
|
524 | (1) |
|
18.5.7 Poisson observations |
|
|
525 | (2) |
|
|
527 | (6) |
|
|
533 | (158) |
|
19 A review of differential geometry |
|
|
535 | (44) |
|
19.1 Projection operators |
|
|
535 | (6) |
|
19.2 Covariant derivatives of vector fields |
|
|
541 | (6) |
|
19.2.1 First order derivatives |
|
|
543 | (3) |
|
19.2.2 Second order derivatives |
|
|
546 | (1) |
|
19.3 Divergence and mean curvature |
|
|
547 | (7) |
|
19.4 Lie brackets and commutation formulae |
|
|
554 | (2) |
|
19.5 Inner product derivation formulae |
|
|
556 | (3) |
|
19.6 Second order derivatives and some trace formulae |
|
|
559 | (3) |
|
|
562 | (1) |
|
|
563 | (5) |
|
19.9 Bochner-Lichnerowicz formula |
|
|
568 | (8) |
|
|
576 | (3) |
|
20 Stochastic differential calculus on manifolds |
|
|
579 | (14) |
|
|
579 | (2) |
|
20.2 Brownian motion on manifolds |
|
|
581 | (3) |
|
20.2.1 A diffusion model in the ambient space |
|
|
581 | (2) |
|
20.2.2 The infinitesimal generator |
|
|
583 | (1) |
|
20.2.3 Monte Carlo simulation |
|
|
584 | (1) |
|
20.3 Stratonovitch differential calculus |
|
|
584 | (2) |
|
20.4 Projected diffusions on manifolds |
|
|
586 | (3) |
|
20.5 Brownian motion on orbifolds |
|
|
589 | (2) |
|
|
591 | (2) |
|
21 Parametrizations and charts |
|
|
593 | (36) |
|
21.1 Differentiable manifolds and charts |
|
|
593 | (3) |
|
21.2 Orthogonal projection operators |
|
|
596 | (3) |
|
21.3 Riemannian structures |
|
|
599 | (3) |
|
21.4 First order covariant derivatives |
|
|
602 | (7) |
|
21.4.1 Pushed forward functions |
|
|
602 | (2) |
|
21.4.2 Pushed forward vector fields |
|
|
604 | (2) |
|
21.4.3 Directional derivatives |
|
|
606 | (3) |
|
21.5 Second order covariant derivative |
|
|
609 | (8) |
|
21.5.1 Tangent basis functions |
|
|
609 | (3) |
|
21.5.2 Composition formulae |
|
|
612 | (1) |
|
|
613 | (4) |
|
21.6 Bochner-Lichnerowicz formula |
|
|
617 | (6) |
|
|
623 | (6) |
|
22 Stochastic calculus in chart spaces |
|
|
629 | (10) |
|
22.1 Brownian motion on Riemannian manifolds |
|
|
629 | (2) |
|
22.2 Diffusions on chart spaces |
|
|
631 | (1) |
|
22.3 Brownian motion on spheres |
|
|
632 | (2) |
|
22.3.1 The unit circle S = S1 ⊂ R1 |
|
|
632 | (1) |
|
22.3.2 The unit sphere S = S2 ⊂ R2 |
|
|
633 | (1) |
|
22.4 Brownian motion on the torus |
|
|
634 | (1) |
|
22.5 Diffusions on the simplex |
|
|
635 | (2) |
|
|
637 | (2) |
|
23 Some analytical aspects |
|
|
639 | (34) |
|
23.1 Geodesics and the exponential map |
|
|
639 | (4) |
|
|
643 | (2) |
|
23.3 Integration on manifolds |
|
|
645 | (12) |
|
23.3.1 The volume measure on the manifold |
|
|
645 | (3) |
|
23.3.2 Wedge product and volume forms |
|
|
648 | (2) |
|
23.3.3 The divergence theorem |
|
|
650 | (7) |
|
23.4 Gradient flow models |
|
|
657 | (2) |
|
23.4.1 Steepest descent model |
|
|
657 | (1) |
|
23.4.2 Euclidian state spaces |
|
|
658 | (1) |
|
23.5 Drift changes and irreversible Langevin diffusions |
|
|
659 | (6) |
|
23.5.1 Langevin diffusions on closed manifolds |
|
|
661 | (1) |
|
23.5.2 Riemannian Langevin diffusions |
|
|
662 | (3) |
|
23.6 Metropolis-adjusted Langevin models |
|
|
665 | (1) |
|
23.7 Stability and some functional inequalities |
|
|
666 | (3) |
|
|
669 | (4) |
|
|
673 | (18) |
|
|
673 | (8) |
|
|
673 | (1) |
|
|
674 | (4) |
|
|
678 | (3) |
|
|
681 | (10) |
|
24.2.1 Nash embedding theorem |
|
|
681 | (1) |
|
24.2.2 Distribution manifolds |
|
|
682 | (1) |
|
24.2.3 Bayesian statistical manifolds |
|
|
683 | (2) |
|
24.2.4 Cramer-Rao lower bound |
|
|
685 | (1) |
|
24.2.5 Some illustrations |
|
|
685 | (1) |
|
24.2.5.1 Boltzmann-Gibbs measures |
|
|
685 | (1) |
|
24.2.5.2 Multivariate normal distributions |
|
|
686 | (5) |
|
VI Some application areas |
|
|
691 | (148) |
|
|
693 | (12) |
|
25.1 Random walk on lattices |
|
|
693 | (1) |
|
|
693 | (1) |
|
|
693 | (1) |
|
|
694 | (1) |
|
|
694 | (1) |
|
25.2 Random walks on graphs |
|
|
694 | (1) |
|
25.3 Simple exclusion process |
|
|
695 | (1) |
|
25.4 Random walks on the circle |
|
|
695 | (2) |
|
25.4.1 Markov chain on cycle |
|
|
695 | (1) |
|
25.4.2 Markov chain on circle |
|
|
696 | (1) |
|
25.4.3 Spectral decomposition |
|
|
696 | (1) |
|
25.5 Random walk on hypercubes |
|
|
697 | (2) |
|
|
697 | (1) |
|
25.5.2 A macroscopic model |
|
|
698 | (1) |
|
25.5.3 A lazy random walk |
|
|
698 | (1) |
|
|
699 | (2) |
|
|
699 | (1) |
|
|
700 | (1) |
|
|
701 | (4) |
|
26 Iterated random functions |
|
|
705 | (26) |
|
|
705 | (2) |
|
26.2 A motivating example |
|
|
707 | (1) |
|
|
708 | (4) |
|
26.3.1 An ancestral type evolution model |
|
|
708 | (1) |
|
26.3.2 An absorbed Markov chain |
|
|
709 | (3) |
|
|
712 | (7) |
|
|
712 | (1) |
|
26.4.2 The top-in-at-random shuffle |
|
|
712 | (1) |
|
26.4.3 The random transposition shuffle |
|
|
713 | (3) |
|
26.4.4 The riffle shuffle |
|
|
716 | (3) |
|
|
719 | (6) |
|
26.5.1 Exploration of Cantor's discontinuum |
|
|
720 | (3) |
|
26.5.2 Some fractal images |
|
|
723 | (2) |
|
|
725 | (6) |
|
27 Computational and statistical physics |
|
|
731 | (28) |
|
27.1 Molecular dynamics simulation |
|
|
731 | (6) |
|
27.1.1 Newton's second law of motion |
|
|
731 | (3) |
|
27.1.2 Langevin diffusion processes |
|
|
734 | (3) |
|
27.2 Schrodinger equation |
|
|
737 | (12) |
|
27.2.1 A physical derivation |
|
|
737 | (2) |
|
27.2.2 Feynman-Kac formulation |
|
|
739 | (3) |
|
27.2.3 Bra-kets and path integral formalism |
|
|
742 | (1) |
|
27.2.4 Spectral decompositions |
|
|
743 | (2) |
|
27.2.5 The harmonic oscillator |
|
|
745 | (3) |
|
27.2.6 Diffusion Monte Carlo models |
|
|
748 | (1) |
|
27.3 Interacting particle systems |
|
|
749 | (4) |
|
|
749 | (2) |
|
|
751 | (1) |
|
|
751 | (1) |
|
|
752 | (1) |
|
|
753 | (6) |
|
28 Dynamic population models |
|
|
759 | (28) |
|
28.1 Discrete time birth and death models |
|
|
759 | (3) |
|
28.2 Continuous time models |
|
|
762 | (7) |
|
28.2.1 Birth and death generators |
|
|
762 | (1) |
|
28.2.2 Logistic processes |
|
|
762 | (2) |
|
28.2.3 Epidemic model with immunity |
|
|
764 | (1) |
|
28.2.4 Lotka-Volterra predator-prey stochastic model |
|
|
765 | (3) |
|
28.2.5 Moran genetic model |
|
|
768 | (1) |
|
28.3 Genetic evolution models |
|
|
769 | (1) |
|
|
770 | (10) |
|
28.4.1 Birth and death models with linear rates |
|
|
770 | (2) |
|
28.4.2 Discrete time branching processes |
|
|
772 | (1) |
|
28.4.3 Continuous time branching processes |
|
|
773 | (1) |
|
28.4.3.1 Absorption-death process |
|
|
774 | (1) |
|
28.4.3.2 Birth type branching process |
|
|
775 | (2) |
|
28.4.3.3 Birth and death branching processes |
|
|
777 | (1) |
|
28.4.3.4 Kolmogorov-Petrovskii-Piskunov equation |
|
|
778 | (2) |
|
|
780 | (7) |
|
29 Gambling, ranking and control |
|
|
787 | (34) |
|
|
787 | (1) |
|
29.2 Gambling betting systems |
|
|
788 | (9) |
|
29.2.1 Martingale systems |
|
|
788 | (1) |
|
29.2.2 St. Petersburg martingales |
|
|
789 | (2) |
|
29.2.3 Conditional gains and losses |
|
|
791 | (1) |
|
29.2.3.1 Conditional gains |
|
|
791 | (1) |
|
29.2.3.2 Conditional losses |
|
|
791 | (1) |
|
29.2.4 Bankroll management |
|
|
792 | (2) |
|
|
794 | (1) |
|
29.2.6 D'Alembert martingale |
|
|
794 | (2) |
|
29.2.7 Whittacker martingale |
|
|
796 | (1) |
|
29.3 Stochastic optimal control |
|
|
797 | (10) |
|
|
797 | (5) |
|
29.3.2 Control dependent value functions |
|
|
802 | (2) |
|
29.3.3 Continuous time models |
|
|
804 | (3) |
|
|
807 | (5) |
|
29.4.1 Games with fixed terminal condition |
|
|
807 | (2) |
|
|
809 | (2) |
|
29.4.3 Continuous time models |
|
|
811 | (1) |
|
|
812 | (9) |
|
|
821 | (18) |
|
|
821 | (5) |
|
30.1.1 Up and down martingales |
|
|
821 | (3) |
|
30.1.2 Cox-Ross-Rubinstein model |
|
|
824 | (1) |
|
30.1.3 Black-Scholes-Merton model |
|
|
825 | (1) |
|
30.2 European option pricing |
|
|
826 | (9) |
|
30.2.1 Call and put options |
|
|
826 | (1) |
|
30.2.2 Self-financing portfolios |
|
|
827 | (1) |
|
30.2.3 Binomial pricing technique |
|
|
828 | (2) |
|
30.2.4 Black-Scholes-Merton pricing model |
|
|
830 | (1) |
|
30.2.5 Black-Scholes partial differential equation |
|
|
831 | (1) |
|
30.2.6 Replicating portfolios |
|
|
832 | (1) |
|
30.2.7 Option price and hedging computations |
|
|
833 | (1) |
|
30.2.8 A numerical illustration |
|
|
834 | (1) |
|
|
835 | (4) |
Bibliography |
|
839 | (16) |
Index |
|
855 | |