Atnaujinkite slapukų nuostatas

El. knyga: Stochastic Processes with R: An Introduction

(California State University, Long Beach, USA)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Stochastic Processes with R: An Introduction cuts through the heavy theory that is present in most courses on random processes and serves as practical guide to simulated trajectories and real-life applications for stochastic processes.

Stochastic Processes with R: An Introduction cuts through the heavy theory that is present in most courses on random processes and serves as practical guide to simulated trajectories and real-life applications for stochastic processes. The light yet detailed text provides a solid foundation that is an ideal companion for undergraduate statistics students looking to familiarize themselves with stochastic processes before going on to more advanced courses.

Key Features

  • Provides complete R codes for all simulations and calculations
  • Substantial scientific or popular applications of each process with occasional statistical analysis
  • Helpful definitions and examples are provided for each process
    • End of chapter exercises cover theoretical applications and practice calculations
  •  



    Stochastic Processes with R: An Introduction cuts through the heavy theory that is present in most courses on random processes and serves as practical guide to simulated trajectories and real-life applications for stochastic processes. 

    Recenzijos

    CRC Press Title: Stochastic Processes with R ISBN: 9781032153735 was successfully transmitted to the Library of Congress. "This book is useful for simulating Markov chains, Poisson processes, and Brownian motion. The book can be used as supplementary reading for a first course in stochastic processes at the undergraduate-graduate level."

    - David J. Olive, Technometrics, November 2022.

    1 Stochastic Process. Discrete-time Markov Chain 2 Random Walk 3 Poisson
    Process 4 Nonhomogeneous Poisson Process 5 Compound Poisson Process 6
    Conditional Poisson Process 7 Birth-and-Death Process 8 Branching Process 9
    Brownian Motion
    Olga Korosteleva, PhD, is a professor of statistics in the Department of Mathematics and Statistics at California State University, Long Beach (CSULB). She earned her Bachelors degree in mathematics in 1996 from Wayne State University in Detroit, and her PhD in statistics from Purdue University in West Lafayette, Indiana, in 2002. Since then she has been teaching statistics and mathematics courses at CSULB.