Atnaujinkite slapukų nuostatas

El. knyga: Storing Energy: with Special Reference to Renewable Energy Sources

Edited by (Emeritus Professor, University of KwaZulu-Natal, South Africa)
  • Formatas: PDF+DRM
  • Išleidimo metai: 18-Jan-2022
  • Leidėjas: Elsevier Science Publishing Co Inc
  • Kalba: eng
  • ISBN-13: 9780128245118
  • Formatas: PDF+DRM
  • Išleidimo metai: 18-Jan-2022
  • Leidėjas: Elsevier Science Publishing Co Inc
  • Kalba: eng
  • ISBN-13: 9780128245118

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Storing Energy: With Special Reference to Renewable Energy Sources, Second Edition has been fully revised and substantially extended to provide up-to-date and essential discussion that will support the needs of the world’s future energy and climate change policies. New sections cover thermal energy storage, tidal storage, sustainability issues in relation to storing energy and impacts on global energy markets. Various systems are discussed, including mechanical/kinetic, thermal, electrochemical and other chemical, as well as other emerging technologies.

Incorporating advancements described in the book will help the people of the world further overcome the problems related to future energy and climate change.

  • Covers all types of energy storage systems, allowing and encouraging comparisons to be made
  • Written by world experts in the field to provide the latest developments in this fast moving and vital technology
  • Covers the technical, environmental, social and political aspects related to the storing of energy, and in particular, renewable energy
List of contributors
xv
Preface xxi
Section A Introduction
1(34)
1 Global warming, greenhouse gases, renewable energy, and storing energy
3(10)
Trevor M. Letcher
1 Introduction
3(1)
2 Global warming and greenhouse gases
3(2)
3 Carbon dioxide in the atmosphere
5(2)
4 Renewable energy
7(1)
5 Our present energy situation
7(3)
6 The urgent need for storing energy
10(1)
7 Conclusion
11(2)
References
11(2)
2 Energy storage options to balance renewable electricity systems
13(22)
Paul E. Dodds
Seamus D. Garvey
1 Introduction
13(1)
2 The need for new types of storage
14(4)
3 Storage technologies
18(4)
4 Comparing storage systems
22(1)
5 Challenges for energy storage
23(7)
6 Conclusions
30(5)
References
31(4)
Section B Gravitational/thermomechanical storage techniques
35(228)
3 Pumped hydro storage (PHS)
37(30)
Julian David Hunt
Behnam Zakeri
Andreas Nascimento
Roberto Brandao
1 Introduction
37(5)
2 Storage cycles duration
42(3)
3 Conventional arrangement types
45(2)
4 Services provided by PHS plants
47(3)
5 New arrangements for PHS
50(4)
6 Pump-turbine types
54(4)
7 World potential for PHS
58(1)
8 Conclusion
59(8)
Acknowledgments
61(1)
References
61(6)
4 Novel hydroelectric storage concepts
67(24)
Frank Escombe
1 Introduction
67(2)
2 High-density fluid PHES
69(3)
3 Piston-in-cylinder electrical energy storage
72(17)
4 Endpiece
89(2)
References
90(1)
5 Gravity energy storage systems
91(26)
Miles Franklin
Peter Fraenkel
Chris Yendell
Ruth Apps
1 Introduction
91(2)
2 History
93(2)
3 Physics
95(7)
4 The Gravitricity system
102(5)
5 Technical characteristics
107(4)
6 Levelized cost and comparison with other technologies
111(2)
7 Market
113(2)
8 Gravitricity technology development
115(2)
References
115(2)
6 Compressed air energy storage (CAES)
117(24)
Seamus D. Garvey
Andrew Pimm
1 Introduction
117(2)
2 CAES: modes of operation and basic principles
119(6)
3 Air containments for CAES
125(6)
4 System configurations and plant concepts
131(4)
5 Thermal storage for CAES
135(2)
6 Performance metrics for CAES
137(1)
7 Integrating CAES with generation or consumption
138(1)
8 Concluding remarks
139(2)
References
139(1)
Further reading
140(1)
7 Compressed air energy storage
141(16)
Sabine Donadei
Gregor-Sdnke Schneider
1 Introduction
141(1)
2 Mode of operation
142(2)
3 Plant concept
144(3)
4 Underground storages
147(10)
References
154(3)
8 Underwater compressed air energy storage
157(22)
Andrew Pimm
Seamus D. Garvey
1 Introduction
157(1)
2 Storage vessels for UWCAES
158(5)
3 Anchorage and installation
163(3)
4 System configurations
166(2)
5 Locations
168(1)
6 Cost and efficiency
169(5)
7 Contrasting UWCAES with pure gravitational storage approaches in deep water
174(1)
8 State of development
174(1)
9 Concluding remarks
175(4)
References
176(3)
9 A novel pumped hydro combined with compressed air energy storage system
179(12)
Erren Yao
Hansen Zou
Ruixiong Li
Huanran Wang
Guang Xi
1 Introduction
179(1)
2 Basic principles of PHCA system
180(1)
3 Characteristics of PHCA system
181(1)
4 A novel constant-pressure PHCA system
182(1)
5 Storage density analysis
183(1)
6 Thermodynamic analysis
184(2)
7 Results
186(5)
References
189(2)
10 Liquid air energy storage
191(16)
Yulong Ding
Yongliang Li
Lige Tong
Li Wang
1 Introduction
191(1)
2 Energy and exergy densities of liquid air
192(2)
3 Liquid air as both a storage medium and an efficient working fluid
194(2)
4 Applications of LAES through integration
196(7)
5 Technical and economical comparison, of LAES with other energy storage technologies
203(4)
References
205(2)
11 Flywheel energy storage
207(36)
Keith R. Pullen
1 Introduction
207(2)
2 Principles of operation
209(8)
3 High-performance electric flywheel storage systems
217(10)
4 Performance attributes in comparison with other electrical storage technologies
227(5)
5 Current and future applications
232(8)
6 Conclusion
240(3)
References
240(3)
12 Rechargeable lithium-ion battery systems
243(20)
Matthias Wetter
Stephan Lux
1 Introduction
243(1)
2 Physical fundamentals of lithium-ion batteries
244(1)
3 Development of lithium-ion battery storage systems
244(15)
4 System integration
259(2)
5 Conclusions
261(2)
References
262(1)
Section C Electrochemical and electrical energy storage techniques
263(180)
13 The road to potassium-ion batteries
265(44)
Titus Masese
Godwill Mbiti Kanyolo
1 Introduction
265(1)
2 The evolution of modem batteries
265(1)
3 Mechanisms of lithium-ion battery operations
266(3)
4 Cathode chemistries
269(8)
5 Electrolytes
277(11)
6 Anode materials
288(6)
7 Beyond cation intercalation chemistries
294(4)
8 Perspectives
298(11)
Acknowledgments
300(1)
References
300(9)
14 Lithium--sulfur battery: Generation 5 of battery energy storage systems
309(20)
Mahdokht Shaibani
Mainak Majumder
1 Introduction
309(1)
2 Anatomy of Li--S battery, challenges, and latest developments
310(10)
3 Potential applications of lightweight Li--S battery: existing, emerging, and new avenues
320(3)
4 Conclusion and outlook: custom-designed Li--S battery is on its way
323(6)
References
324(5)
15 Sodium--sulfur batteries
329(14)
Zhen Li
Jingyi Wu
1 Introduction
329(1)
2 Principles of Na--S batteries
330(2)
3 Technical challenges
332(2)
4 Cathode
334(2)
5 Anodes
336(2)
6 Electrolyte
338(2)
7 Cell configuration
340(1)
8 Conclusions and perspectives
340(3)
References
340(3)
16 All-solid-state batteries
343(20)
Zhen Li
Yuyu Li
1 Introduction
343(1)
2 Solid-state electrolytes (SSEs)
343(10)
3 Interface in ASS-L/SIBs
353(4)
4 Conclusion
357(6)
References
358(5)
17 Vanadium redox flow batteries
363(20)
Christian Doetsch
Jens Burfeind
1 Introduction and historic development
363(1)
2 The function of the VRFB
364(5)
3 Electrolytes of VRFB
369(1)
4 VRFB versus other battery types
370(1)
5 Application of VRFB
371(2)
6 Recycling, environment, safety, and availability
373(1)
7 Other flow batteries
374(9)
References
378(2)
Further reading
380(3)
18 Supercapacitors
383(36)
Narendra Kurra
Qiu Jiang
1 Introduction
383(1)
2 Basics of charge storage
384(2)
3 Historical evolution from capacitors to electrical double-layer capacitors
386(3)
4 Models to explain electrical double layers
389(5)
5 Evolution of electrode materials for supercapacitors
394(2)
6 State-of-the-art energy storage technologies
396(1)
7 Pseudocapacitive energy storage
397(3)
8 Material requirements for achieving simultaneous high energy density at high power density
400(1)
9 Electrochemical characterization techniques for supercapacitors
401(5)
10 Energy storage devices
406(5)
11 Applications of supercapacitors
411(2)
12 Conclusions and challenges
413(6)
References
414(5)
19 Sensible thermal energy storage: diurnal and seasonal
419(24)
Cynthia Ann Cruickshank
Christopher Baldwin
1 Storing thermal energy
419(1)
2 Design of the thermal storage and thermal stratification
420(2)
3 Modeling of sensible heat storage
422(4)
4 Second law analysis of thermal energy storage
426(1)
5 Solar thermal energy storage systems
427(1)
6 Thermal storage integrated with heat pumps
428(1)
7 Cold thermal energy storage
429(3)
8 Seasonal storage
432(6)
9 Concluding remarks
438(5)
References
438(5)
Section D Thermal storage techniques
443(150)
20 Storing energy using molten salts
445(42)
Michael Geyer
Cristina Prieto
1 Introduction to molten salt thermal energy storage systems
445(7)
2 Molten salt energy storage uses
452(13)
3 Molten salts--a medium for heat transfer and heat storage
465(6)
4 Molten salt thermal storage system
471(8)
5 Reference plant examples
479(3)
6 Conclusions and outlook
482(5)
References
483(4)
21 Pumped thermal energy storage
487(16)
Zhiwei Ma
Max Albert
Huashan Bao
Anthony Paul Roskilly
1 Introduction
487(2)
2 Rankine PTES cycle
489(4)
3 Brayton PTES cycle
493(4)
4 Transcritical PTES cycle
497(3)
5 Economics of PTES
500(3)
References
501(2)
22 Phase change materials
503(34)
John A. Noel
Samer Kahwaji
Louis Desgrosseilliers
Dominic Groulx
Mary Anne White
1 Introduction
503(5)
2 Heat storage at subambient temperatures
508(3)
3 Heat storage at ambient temperature
511(3)
4 Heat storage at moderate temperatures
514(4)
5 Heat storage at high temperatures
518(4)
6 Heat transfer in PCM-based thermal storage systems
522(3)
7 Gaps in knowledge
525(4)
8 Outlook
529(8)
References
530(7)
23 Solar ponds
537(22)
Cesar Valderrama
Jose Luis Cortina
Aliakbar Akbarzadeh
Mohammed Bawahab
Hosam Faqeha
Abhijit Date
1 Introduction
537(1)
2 Types of solar ponds
538(9)
3 Investment and operational cost
547(1)
4 Applications of solar ponds
547(12)
References
555(4)
24 Hydrogen from water electrolysis
559(34)
Greig Chisholm
Tingting Zhao
Leroy Cronin
1 Introduction
559(3)
2 Hydrogen as an energy vector and basic principles of water electrolysis
562(3)
3 Hydrogen production via water electrolysis
565(6)
4 Strategies for storing energy in hydrogen
571(5)
5 Technology demonstrations utilizing hydrogen as an energy storage medium
576(5)
6 Emerging technologies and outlook
581(6)
7 Conclusion
587(6)
References
587(6)
Section E Chemical storage techniques
593(136)
25 Power-to-Gas
595(18)
Robert Tichler
Stephan Bauer
Hans Bbhm
1 Introduction
595(3)
2 Dynamic electrolyzer operation as a core part of power-to-gas plants
598(3)
3 The methanation processes within power-to-gas
601(2)
4 Multifunctional applications of the power-to-gas system
603(4)
5 Underground gas storage in the context of power-to-gas
607(6)
References
609(4)
26 Large-scale hydrogen storage
613(20)
Fritz Crotogino
1 Hydrogen economy--from the original idea to the future concept
613(1)
2 Why use hydrogen storage to compensate for fluctuating renewables?
614(5)
3 Hydrogen in the chemical industry
619(1)
4 Options for large-scale underground gas storage
620(6)
5 Underground hydrogen storage in detail
626(7)
References
631(2)
27 Traditional bulk energy storage--coal and underground natural gas and oil storage
633(18)
Fritz Crotogino
1 Introduction
633(1)
2 Coal
634(2)
3 Oil
636(5)
4 Natural gas storage
641(8)
5 Summary
649(2)
References
649(2)
28 Thermochemical energy storage
651(34)
Huashan Bao
Zhiwei Ma
1 Introduction
651(2)
2 Overview of thermochemical sorption energy storage
653(14)
3 Overview of thermochemical energy storage without sorption
667(5)
4 Hybrid thermochemical sorption energy storage
672(13)
References
676(9)
29 Energy storage integration
685(44)
Philip C. Taylor
Charalampos Patsios
Stalin Muhoz Vaca
David M. Greenwood
Neal S. Wade
1 Introduction
685(1)
2 Energy policy and markets
686(6)
3 Energy storage planning
692(7)
4 Energy storage operation
699(6)
5 Demonstration projects
705(10)
6 Integrated modeling approach
715(14)
References
724(5)
Section F Integration
729(40)
30 Off-grid energy storage
731(22)
Catalina Spataru
Pierrick Bouffaron
1 Introduction: The challenges of energy storage
731(1)
2 Why is off-grid energy important?
732(2)
3 Battery technologies and applications
734(6)
4 Dealing with renewable variability
740(1)
5 The emergence of mini- and microgrids
741(1)
6 Energy storage in island contexts
742(1)
7 Bring clean energy to the poor
743(1)
8 The way forward: cost structure evolution
744(1)
9 International examples
745(4)
10 Conclusions
749(4)
References
749(4)
31 Energy storage worldwide
753(16)
Catalina Spataru
Priscila Carvalho
Xiaojing Lv
Trevor Sweetnam
Giorgio Castagneto Gissey
1 Introduction: the global energy storage market
753(2)
2 Barriers to the development and deployment
755(1)
3 Case studies
756(6)
4 Lessons for the development of storage
762(3)
5 Conclusions
765(4)
References
766(3)
Section G International and marketing issues
769(62)
32 Storing energy in China--an overview
771(22)
Haisheng Chen
Yujie Xu
Chang Liu
Fengjuan He
Shan Hu
1 Introduction
771(1)
2 Imperativeness and applications
772(1)
3 Technical and development status
773(13)
4 Summary and prospects
786(2)
5 Conclusions and remarks
788(5)
Acknowledgments
789(1)
References
789(2)
Further reading
791(2)
33 Legislation, statutory instruments and licenses for storing energy in UK
793(18)
Priscila Carvalho
Catalina Spataru
1 Introduction
793(3)
2 Low-carbon policy in the UK for storage
796(1)
3 Electricity markets and storage: legislation, statutory instruments, codes, and licenses
797(6)
4 Standards applicable to storage
803(1)
5 Regulatory, legal, and market constraints that impact storage
803(4)
6 Conclusions
807(4)
References
808(3)
34 Electricity markets and regulatory developments for storage in Brazil
811(20)
Priscila Carvalho
Catalina Spataru
Andre Serrao
1 Introduction
811(2)
2 Electricity market developments in Brazil: past, present, and future
813(3)
3 Regulation of Brazilian electricity market
816(1)
4 Distributed renewable generation: current state-of-the-art
817(1)
5 Electricity storage in Brazil
818(9)
6 Discussing challenges
827(1)
7 Conclusions
828(3)
References
828(3)
Index 831
Professor Trevor Letcher is an Emeritus Professor at the University of KwaZulu-Natal, South Africa, and living in the United Kingdom. He was previously Professor of Chemistry, and Head of Department, at the University of the Witwatersrand, Rhodes University, and Natal, in South Africa (1969-2004). He has published over 300 papers on areas such as chemical thermodynamic and waste from landfill in peer reviewed journals, and 100 papers in popular science and education journals. Prof. Letcher has edited and/or written 32 major books, of which 22 were published by Elsevier, on topics ranging from future energy, climate change, storing energy, waste, tyre waste and recycling, wind energy, solar energy, managing global warming, plastic waste, renewable energy, and environmental disasters. He has been awarded gold medals by the South African Institute of Chemistry and the South African Association for the Advancement of Science, and the Journal of Chemical Thermodynamics honoured him with a Festschrift in 2018. He is a life member of both the Royal Society of Chemistry (London) and the South African Institute of Chemistry. He is on the editorial board of the Journal of Chemical Thermodynamics, and is a Director of the Board of the International Association of Chemical Thermodynamics since 2002.