Atnaujinkite slapukų nuostatas

Story of Algebraic Numbers in the First Half of the 20th Century: From Hilbert to Tate 2018 ed. [Kietas viršelis]

  • Formatas: Hardback, 443 pages, aukštis x plotis: 235x155 mm, weight: 846 g, 1 Illustrations, black and white; XI, 443 p. 1 illus., 1 Hardback
  • Serija: Springer Monographs in Mathematics
  • Išleidimo metai: 29-Jan-2019
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030037533
  • ISBN-13: 9783030037536
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 443 pages, aukštis x plotis: 235x155 mm, weight: 846 g, 1 Illustrations, black and white; XI, 443 p. 1 illus., 1 Hardback
  • Serija: Springer Monographs in Mathematics
  • Išleidimo metai: 29-Jan-2019
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030037533
  • ISBN-13: 9783030037536
Kitos knygos pagal šią temą:

The book is aimed at people working in number theory or at least interested in this part of mathematics. It presents the development of the theory of algebraic numbers up to the year 1950 and contains a rather complete bibliography of that period.  The reader will get  information about results obtained before 1950. It is hoped that this may be helpful in preventing rediscoveries of old results, and might also inspire the reader to look at the work done  earlier, which may hide some  ideas which could be applied in contemporary research.

Recenzijos

The book is a new masterpiece in the series of Wladislaw Narkiewiczs books that are favourites of all researchers in number theory. The book is truly recommended to all number theorists. (Istvįn Gaįl, zbMath 1416.11003, 2019)

1 The Birth of Algebraic Number Theory
1(62)
1.1 The Beginning
1(15)
1.1.1 Euler
1(1)
1.1.2 Gauss
2(10)
1.1.3 Dirichlet
12(4)
1.2 First Steps
16(15)
1.2.1 Eisenstein
16(3)
1.2.2 Kummer
19(12)
1.3 Establishing the Theory
31(24)
1.3.1 Kronecker
31(5)
1.3.2 Geometrical Approach: Hermite and Minkowski
36(7)
1.3.3 Dedekind
43(10)
1.3.4 Frobenius and Stickelberger
53(2)
1.4 Other Results
55(5)
1.5 Remarks
60(3)
2 The Turn of the Century
63(32)
2.1 David Hilbert
63(10)
2.1.1 First Results
63(2)
2.1.2 Zahlbericht
65(6)
2.1.3 After the Zahlbericht
71(2)
2.2 Kurt Hensel
73(12)
2.2.1 Field Index and Monogenic Fields
73(4)
2.2.2 Discriminants
77(2)
2.2.3 p-Adic Numbers
79(6)
2.3 The Beginnings of Class-Field Theory
85(10)
2.3.1 Kronecker's Jugendtraum
85(3)
2.3.2 Heinrich Weber
88(3)
2.3.3 Hilbert's Class-Field
91(4)
3 First Years of the Century
95(46)
3.1 Analytic Methods
95(19)
3.1.1 Edmund Landau
95(8)
3.1.2 Erich Hecke and the New L-Functions
103(11)
3.2 Structure
114(13)
3.2.1 Steinitz
114(3)
3.2.2 Galois Groups
117(3)
3.2.3 Discriminants and Integral Bases
120(2)
3.2.4 Units
122(3)
3.2.5 Splitting Primes
125(1)
3.2.6 Reciprocity
126(1)
3.3 Class-Number
127(6)
3.3.1 Quadratic Fields
127(3)
3.3.2 Cyclotomic Fields
130(3)
3.4 Other Questions
133(5)
3.5 Books
138(3)
4 The Twenties
141(48)
4.1 Structure
141(12)
4.1.1 Ideal Theory
141(3)
4.1.2 Integral Bases, Discriminants, Factorizations
144(6)
4.1.3 Units
150(3)
4.2 Analytical Methods
153(8)
4.2.1 Quadratic Reciprocity Law
153(2)
4.2.2 Sums of Powers
155(2)
4.2.3 Sums of Primes
157(1)
4.2.4 Piltz Problem
158(1)
4.2.5 Values of Zeta-Functions
159(2)
4.3 Class-Field Theory
161(14)
4.3.1 Takagi
161(3)
4.3.2 Artin
164(8)
4.3.3 Hasse
172(3)
4.4 Class-Number and Class-Group
175(5)
4.4.1 Quadratic Fields
175(3)
4.4.2 Other Fields
178(2)
4.5 Other Questions
180(9)
4.5.1 Galois Groups
180(2)
4.5.2 Algebraic Numbers in the Plane
182(2)
4.5.3 Infinite Extensions
184(1)
4.5.4 Varia
185(1)
4.5.5 Books
186(3)
5 The Thirties
189(40)
5.1 Structure
189(8)
5.1.1 Ideal Theory
189(1)
5.1.2 Integral Bases, Discriminants, Factorizations
190(4)
5.1.3 Units
194(3)
5.2 Class-Field Theory
197(8)
5.2.1 Hasse
197(5)
5.2.2 Chevalley
202(3)
5.3 Class-Number and Class-Group
205(7)
5.3.1 Quadratic Fields
205(6)
5.3.2 Other Fields
211(1)
5.4 Other Questions
212(17)
5.4.1 Additive Problems
212(2)
5.4.2 Galois Groups
214(1)
5.4.3 Euclidean Algorithm
215(1)
5.4.4 Algebraic Numbers on the Plane
215(7)
5.4.5 Infinite Extensions
222(1)
5.4.6 Local Fields
223(2)
5.4.7 Algebraic Numbers and Matrices
225(1)
5.4.8 Varia
226(3)
6 The Forties
229(30)
6.1 Analytic Methods
229(8)
6.1.1 General Results
229(5)
6.1.2 Additive Problems
234(3)
6.2 The Class-Number
237(8)
6.2.1 Class-Number of Quadratic Fields
237(5)
6.2.2 Class-Number of Cyclotomic Fields
242(3)
6.3 Class-Field Theory
245(4)
6.4 Euclidean Algorithm
249(2)
6.5 Other Topics
251(6)
6.6 Books
257(2)
Bibliography 259(158)
Author Index 417(18)
Subject Index 435
Wladyslaw Narkiewicz is a Polish mathematician who is particularly active in the fields of (analytic) number theory, algebra and the history of mathematics. He received his PhD in 1961 and his habilitation in 1967 at the University of Wroclaw, where he also taught from 1974 to 2006 as a full professor. He is the author of several Springer books, among which the Rational Number Theory in the 20th Century and The Development of Prime Number Theory.  Narkiewicz held during his career various administrative functions at the University of Wroclaw, including Deputy Head of the Mathematical Institute, Dean of the Faculty of Mathematics and Physics and Vice Rector for Scientific Affairs. In 1968 he was awarded the Stefan Banach Prize.