Atnaujinkite slapukų nuostatas

El. knyga: Strontium Molecular Lattice Clock: Vibrational Spectroscopy with Hertz-Level Accuracy

  • Formatas: PDF+DRM
  • Serija: Springer Theses
  • Išleidimo metai: 28-Dec-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031476471
  • Formatas: PDF+DRM
  • Serija: Springer Theses
  • Išleidimo metai: 28-Dec-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031476471

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.


This thesis describes how the rich internal degrees of freedom of molecules can be exploited to construct the first “clock” based on ultracold molecules, rather than atoms. By holding the molecules in an optical lattice trap, the vibrational clock is engineered to have a high oscillation quality factor, facilitating the full characterization of frequency shifts affecting the clock at the hertz level. The prototypical vibrational molecular clock is shown to have a systematic fractional uncertainty at the 14th decimal place, matching the performance of the earliest optical atomic lattice clocks. As part of this effort, deeply bound strontium dimers are coherently created, and ultracold collisions of these Van der Waals molecules are studied for the first time, revealing inelastic losses at the universal rate. The thesis reports one of the most accurate measurements of a molecule’s vibrational transition frequency to date. The molecular clock lays the groundwork for explorations into terahertz metrology, quantum chemistry, and fundamental interactions at atomic length scales.


Chapter 1: Introduction.
Chapter 2: Molecular structure and production of ultracold 88Sr2 in an optical lattice.
Chapter 3: Frequency comb assisted spectroscopy of the states.
Chapter 4: Ultracold 88Sr2 molecules in the absolute ground state.
Chapter 5: Terahertz vibrational molecular clock.


Kon H. Leung is an AWS-Quantum postdoctoral scholar at the California Institute of Technology. Leung is an Associate of the Royal College of Science, having earned a BSc in physics from Imperial College London. Leung received a PhD from Columbia University under the direction of Tanya Zelevinsky and was granted the Edward Prince Goldman Scholarship in Science.