Atnaujinkite slapukų nuostatas

El. knyga: Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshops, S+SSPR 2024, Venice, Italy, September 9-10, 2024, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Computer Science 15444
  • Išleidimo metai: 30-Jan-2025
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031805073
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Computer Science 15444
  • Išleidimo metai: 30-Jan-2025
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031805073

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the proceedings of the Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition, S+SSPR 2024, which took place in Venice, Italy, during September 9-11, 2024.





The 19 full papers presented in this volume were carefully reviewed and selected from 27 submissions. The proceedings focus on pattern recognition, including classification and clustering, deep learning, structural matching and graph-theoretic methods, and multimedia analysis and understanding.
.- A Differentiable Approximation of the Graph Edit Distance.

.- Learning Graph Similarity by Counting Holes in Simplicial Complexes.

.- Community-Hop: Enhancing Node Classification through Community
Preference.

.- Spatio-Temporal Graph Neural Networks for Water Temperature Modeling.

.- Enhancing IoT Network Security with Graph Neural Networks for Node Anomaly
Detection.

.- LSTM Networks and Graph Neural Networks for Predicting Events of
Hypoglycemia.

.- Evaluation metrics in Saliency Maps applied to Graph Regression.

.- LESI-GNN: an Interpretable Graph Neural Network based on Local Structures
Embedding.

.- Mixture of Variational Graph Autoencoders.

.- Multimodality Calibration in 3D Multi Input-Multi Output Network for
Dementia Diagnosis with Incomplete Acquisitions.

.- Multi-modal Medical Images Classification Using Meta-learning Algorithms.

.- From semantic segmentation of natural images to medical image segmentation
using ViT-based architectures.

.- Chronic Wound Segmentation and Measurement Using Semi-Supervised
Hierarchical Convolutional Neural Networks.

.- ZIRACLE: Zero-shot composed Image Retrieval with Advanced Component-Level
Emphasis.

.- Improving Object Detector Performance on Low-Quality Images using
Histogram Matching and Model Stacking.

.- Comparing Learning Methods to Enhance Decision-Making in Simulated
Curling.

.- An empirical characterization of the stability of Isolation Forest
results.

.- Automated Classification of Android Games using Word Embeddings.

.- An interesting property of Random Forest distances with respect to the
curse of dimensionality.