Atnaujinkite slapukų nuostatas

Student Solution Manual for Differential Equations: Techniques, Theory, and Applications [Minkštas viršelis]

  • Formatas: Paperback / softback, 294 pages, aukštis x plotis: 279x216 mm, weight: 910 g
  • Išleidimo metai: 30-May-2020
  • Leidėjas: American Mathematical Society
  • ISBN-10: 1470453509
  • ISBN-13: 9781470453503
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 294 pages, aukštis x plotis: 279x216 mm, weight: 910 g
  • Išleidimo metai: 30-May-2020
  • Leidėjas: American Mathematical Society
  • ISBN-10: 1470453509
  • ISBN-13: 9781470453503
Kitos knygos pagal šią temą:
This is the student solution manual for Differential Equations: Techniques, Theory, and Applications by Barbara D. MacCluer, Paul S. Bourdon, and Thomas L. Kriete. This manual has been prepared by the authors of the text and it contains solutions to all of the approximately 725 odd-numbered exercises. The solutions are detailed and carefully written with student readers in mind. The breadth and quality of the exercises are strengths of the original text. In addition to routine exercises that allow students to practice the basic techniques, the text includes many mid-level exercises that help students take the next step beyond the basics, and more challenging exercises, of both a theoretical and modeling nature, organized into manageable steps.
Preface ix
Chapter 1 Introduction
1(6)
1.2 What is a solution?
1(2)
1.3 More on direction fields: Isoclines
3(4)
Chapter 2 First-Order Equations
7(32)
2.1 Linear equations
7(3)
2.2 Separable equations
10(2)
2.3 Applications: Time of death, time at depth, and ancient timekeeping
12(6)
2.4 Existence and uniqueness theorems
18(3)
2.5 Population and financial models
21(4)
2.6 Qualitative solutions of autonomous equations
25(4)
2.7 Change of variable
29(5)
2.8 Exact equations
34(5)
Chapter 3 Numerical Methods
39(12)
3.1 Euler's method
39(4)
3.2 Improving Euler's method: The Heun and Runge-Kutta Algorithms
43(2)
3.3 Optical illusions and other applications
45(6)
Chapter 4 Higher-Order Linear Homogeneous Equations
51(24)
4.1 Introduction to second-order equations
51(5)
4.2 Linear operators
56(4)
4.3 Linear independence
60(2)
4.4 Constant coefficient second-order equations
62(2)
4.5 Repeated roots and reduction of order
64(4)
4.6 Higher-order equations
68(1)
4.7 Higher-order constant coefficient equations
69(3)
4.8 Modeling with second-order equations
72(3)
Chapter 5 Higher-Order Linear Nonhomogeneous Equations
75(16)
5.1 Introduction to nonhomogeneous equations
75(3)
5.2 Annihilating operators
78(5)
5.3 Applications of nonhomogeneous equations
83(3)
5.4 Electric circuits
86(5)
Chapter 6 Laplace Transforms
91(24)
6.1 Laplace transforms
91(4)
6.2 The inverse Laplace transform
95(1)
6.3 Solving initial value problems with Laplace transforms
96(5)
6.4 Applications
101(3)
6.5 Laplace transforms, simple systems, and Iwo Jima
104(3)
6.6 Convolutions
107(3)
6.7 The delta function
110(5)
Chapter 7 Power Series Solutions
115(30)
7.2 Review of power series
115(2)
7.3 Series solutions
117(9)
7.4 Nonpolynomial coefficients
126(2)
7.5 Regular singular points
128(11)
7.6 Bessel's equation
139(6)
Chapter 8 Linear Systems I
145(42)
8.1 Nelson at Trafalgar and phase portraits
145(5)
8.2 Vectors, vector fields, and matrices
150(2)
8.3 Eigenvalues and eigenvectors
152(4)
8.4 Solving linear systems
156(6)
8.5 Phase portraits via ray solutions
162(1)
8.6 More on phase portraits: Saddle points and nodes
163(6)
8.7 Complex and repeated eigenvalues
169(4)
8.8 Applications: Compartment models
173(6)
8.9 Classifying equilibrium points
179(8)
Chapter 9 Linear Systems II
187(22)
9.1 The matrix exponential, Part I
187(8)
9.2 A return to the Existence and Uniqueness Theorem
195(2)
9.3 The matrix exponential, Part II
197(5)
9.4 Nonhomogeneous constant coefficient systems
202(5)
9.5 Periodic forcing and the steady-state solution
207(2)
Chapter 10 Nonlinear Systems
209(36)
10.1 Introduction: Darwin's finches
209(5)
10.2 Linear approximation: The major cases
214(8)
10.3 Linear approximation: The borderline cases
222(3)
10.4 More on interacting populations
225(5)
10.5 Modeling the spread of disease
230(4)
10.6 Hamiltonians, gradient systems, and Lyapunov functions
234(5)
10.7 Pendulums
239(3)
10.8 Cycles and limit cycles
242(3)
Chapter 11 Partial Differential Equations and Fourier Series
245
11.2 Boundary value problems
245(2)
11.3 Partial differential equations: A first look
247(3)
11.4 Advection and diffusion
250(3)
11.5 Functions as vectors
253(2)
11.6 Fourier series
255(8)
11.7 The heat equation
263(4)
11.8 The wave equation: Separation of variables
267(5)
11.9 The wave equation: D'Alembert's method
272(5)
11.10 Laplace's equation
277
Barbara D. MacCluer, University of Virginia, Charlottesville, VA.

Paul S. Bourdon, University of Virginia, Charlottesville, VA.

Thomas L. Kriete, University of Virginia, Charlottesville, VA.