Atnaujinkite slapukų nuostatas

El. knyga: Super-Resolution for Remote Sensing Applications Using Deep Learning Techniques

  • Formatas: 226 pages
  • Išleidimo metai: 14-Dec-2022
  • Leidėjas: Cambridge Scholars Publishing
  • ISBN-13: 9781527591356
  • Formatas: 226 pages
  • Išleidimo metai: 14-Dec-2022
  • Leidėjas: Cambridge Scholars Publishing
  • ISBN-13: 9781527591356

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Satellite image processing is crucial in detecting vegetation, clouds, and other atmospheric applications. Due to sensor limitations and pre-processing, remotely sensed satellite images may have interpretability concerns as to specific portions of the image, making it hard to recognise patterns or objects and posing the risk of losing minute details in the image. Existing imaging processors and optical components are expensive to counterfeit, have interpretability issues, and are not necessarily viable in real applications. This book exploits the usage of deep learning (DL) components in feature extraction to boost the minute details of images and their classification implications to tackle such problems. It shows the importance of super-resolution in improving the spatial details of images and aiding digital aerial photography in pan-sharpening, detecting signatures correctly, and making precise decisions with decision-making tools.
Dr G. Rohith is an Assistant Professor in the School of Electronics Engineering of Vellore Institute of Technology, Chennai Campus, India. His areas of interest include machine learning, deep learning, satellite image processing, and communication, and he is the author of seven publications.Dr G. Lakshmi Sutha is an Associate Professor in the Department of Electronics and Communication Engineering of the National Institute of Technology (NIT) Puducherry, India. Her research interests include remote sensing, climate and weather, digital image processing, audio processing, pattern recognition, and machine learning, and she is the author of over 60 publications.