Atnaujinkite slapukų nuostatas

El. knyga: Superradiance: Energy Extraction, Black-Hole Bombs and Implications for Astrophysics and Particle Physics

  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Physics 906
  • Išleidimo metai: 10-Jul-2015
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319190006
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Physics 906
  • Išleidimo metai: 10-Jul-2015
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319190006

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This volume gives a unified picture of the multifaceted subject of superradiance, with a focus on recent developments in the field, ranging from fundamental physics to astrophysics.Superradiance is a radiation enhancement process that involves dissipative systems. With a 60 year-old history, superradiance has played a prominent role in optics, quantum mechanics and especially in relativity and astrophysics. In Einstein"s General Relativity, black-hole superradiance is permitted by dissipation at the event horizon, which allows energy extraction from the vacuum, even at the classical level. When confined, this amplified radiation can give rise to strong instabilities known as "blackhole bombs"", which have applications in searches for dark matter, in physics beyond the Standard Model and in analog models of gravity. This book discusses and draws together all these fascinating aspects of superradiance.

Introduction.- Superradiance in flat spacetime.- Superradiance in black hole physics.- Black holes and superradiant instabilities.- Black hole superradiance in astrophysics.- Conclusions and Outlook.
1 Introduction
1(10)
1.1 Milestones
2(9)
References
6(5)
2 Superradiance in Flat Spacetime
11(24)
2.1 Klein Paradox: The First Example of Superradiance
11(3)
2.1.1 Bosonic Scattering
12(1)
2.1.2 Fermionic Scattering
13(1)
2.2 Superradiance and Pair Creation
14(2)
2.3 Superradiance and Spontaneous Emission by a Moving Object
16(5)
2.3.1 Cherenkov Emission and Superradiance
18(1)
2.3.2 Cherenkov Radiation by Neutral Particles
18(2)
2.3.3 Superradiance in Superfluids and Superconductors
20(1)
2.4 Sound Amplification by Shock Waves
21(3)
2.4.1 Sonic "Booms"
21(1)
2.4.2 Superradiant Amplification at Discontinuities
22(2)
2.5 Rotational Superradiance
24(5)
2.5.1 Example
1. Scalar Waves
25(1)
2.5.2 Example
2. Sound and Surface Waves: A Practical Experimental Setup?
26(3)
2.6 Tidal Acceleration
29(6)
References
32(3)
3 Superradiance in Black Hole Physics
35(62)
3.1 Action, Equations of Motion and Black Hole Spacetimes
36(6)
3.1.1 Static, Charged Backgrounds
36(1)
3.1.2 Spinning, Neutral Backgrounds
37(1)
3.1.3 Geodesics and Frame Dragging in the Kerr Geometry
38(1)
3.1.4 The Ergoregion
39(2)
3.1.5 Intermezzo: Stationary and Axisymmetric Black Holes Have an Ergoregion
41(1)
3.2 Area Theorem Implies Superradiance
42(1)
3.3 Energy Extraction from Black Holes: The Penrose Process
43(11)
3.3.1 The Original Penrose Process
44(3)
3.3.2 The Newtonian Carousel Analogy
47(1)
3.3.3 Penrose's Process: Energy Limits
48(2)
3.3.4 The Penrose Process in Generic Spacetimes
50(2)
3.3.5 The Collisional Penrose Process: Ultra-High-Energy Debris
52(2)
3.4 The ABC of Black Hole Superradiance
54(2)
3.5 Superradiance from Charged Static Black Holes
56(4)
3.5.1 Linearized Analysis: Amplification Factors
56(1)
3.5.2 Backreaction on the Geometry: Mass and Charge Loss
57(3)
3.6 Superradiance from Rotating Black Holes
60(14)
3.6.1 Bosonic and Fermionic Fields in the Kerr Geometry
60(2)
3.6.2 Energy Fluxes of Bosonic Fields at Infinity and on the Horizon
62(2)
3.6.3 Amplification Factors
64(1)
3.6.4 Dirac Fields on the Kerr Geometry
65(2)
3.6.5 Linearized Analysis: Analytic Versus Numerics
67(3)
3.6.6 Scattering of Plane Waves
70(3)
3.6.7 Nonlinear Superradiant Scattering
73(1)
3.7 Boosted Black Strings: Ergoregions Without Superradiance
74(3)
3.8 Superradiance in Higher Dimensional Spacetimes
77(1)
3.9 Superradiance in Analogue Black Hole Geometries
78(2)
3.10 Superradiance in Nonasymptotically Flat Spacetimes
80(1)
3.11 Superradiance from Stars
81(2)
3.12 Superradiance Beyond General Relativity
83(2)
3.12.1 Superradiance of Black Holes Surrounded by Matter in Scalar-Tensor Theories
84(1)
3.13 Microscopic Description of Superradiance and the Kerr/CFT Duality
85(2)
3.14 Open Issues
87(10)
References
89(8)
4 Black Holes and Superradiant Instabilities
97(60)
4.1 No Black Hole Fission Processes
97(2)
4.2 Spinning Black Holes in Confining Geometries are Unstable
99(2)
4.3 Superradiant Instabilities: Time-Domain Evolutions Versus an Eigenvalue Search
101(1)
4.4 Black Holes Enclosed in a Mirror
102(3)
4.4.1 Rotating Black-Hole Bombs
102(3)
4.4.2 Charged Black-Hole Bombs
105(1)
4.5 Black Holes in AdS Backgrounds
105(8)
4.5.1 Instability of Small Kerr-AdS Black Holes and New BH Solutions
106(4)
4.5.2 Charged AdS Black Holes: Spontaneous Symmetry Breaking and Holographic Superconductors
110(3)
4.6 Massive Bosonic Fields
113(12)
4.6.1 The Zoo of Light Bosonic Fields in Extensions of the Standard Model
114(2)
4.6.2 Massive Scalar Fields
116(3)
4.6.3 Massive Vector Fields
119(3)
4.6.4 Massive Tensor Fields
122(2)
4.6.5 A Unified Picture of Superradiant Instabilities of Massive Bosonic Fields
124(1)
4.7 Black Holes Immersed in a Magnetic Field
125(2)
4.8 Superradiant Instability of Black Holes Surrounded by Conducting Rings
127(1)
4.9 Nonminimal Interactions
128(3)
4.9.1 Plasma-Triggered Superradiant Instabilities
129(1)
4.9.2 Spontaneous Superradiant Instabilities in Scalar-Tensor Theories
129(2)
4.10 Kaluza-Klein Mass: Superradiant Instabilities in Higher Dimensions
131(1)
4.11 Ergoregion Instability
132(11)
4.11.1 Ergoregion Instability of Rotating Objects: A Consistent Approach
133(5)
4.11.2 Ergoregion Instability and Long-Lived Modes
138(2)
4.11.3 Ergoregion Instability in Fluids
140(2)
4.11.4 Ergoregion Instability and Hawking Radiation
142(1)
4.12 Black-Hole Lasers and Superluminal Corrections to Hawking Radiation
143(1)
4.13 Black Holes in Lorentz-Violating Theories: Nonlinear Instabilities
144(1)
4.14 Open Issues
144(13)
References
147(10)
5 Black Hole Superradiance in Astrophysics
157(56)
5.1 Superradiance and Relativistic Jets
157(8)
5.1.1 Blandford-Znajek Process
158(3)
5.1.2 Blandford-Znajek Process and the Membrane Paradigm
161(4)
5.2 Superradiance, CFS Instability, and r-Modes of Spinning Stars
165(3)
5.3 Evolution of Superradiant Instabilities: Gravitational-Wave Emission and Accretion
168(9)
5.3.1 Scalar Clouds Around Spinning Black Holes
169(1)
5.3.2 Gravitational-Wave Emission from the Bosonic Condensate
170(1)
5.3.3 Gas Accretion
170(2)
5.3.4 Growth and Decay of Bosonic Condensates Around Spinning Black Holes
172(2)
5.3.5 Superradiant Instabilities Imply No Highly-Spinning Black Holes
174(2)
5.3.6 Summary of the Evolution of Superradiant Instabilities
176(1)
5.4 Astrophysical Black Holes as Particle Detectors
177(10)
5.4.1 Bounds on the Mass of Bosonic Fields from Gaps in the Regge Plane
178(3)
5.4.2 Gravitational-Wave Signatures and Bosenova
181(4)
5.4.3 Floating Orbits
185(2)
5.5 Are Black Holes in the Universe of the Kerr Family?
187(5)
5.5.1 Circumventing the No-Hair Theorem with Complex Scalars
188(2)
5.5.2 Other Hairy Solutions and the Role of Tidal Dissipation
190(1)
5.5.3 Formation of Hairy Solutions and Bounds on Bosonic Fields
191(1)
5.6 Plasma Interactions
192(2)
5.7 Intrinsic Limits on Magnetic Fields
194(2)
5.8 Phenomenology of the Ergoregion Instability
196(6)
5.8.1 Ergoregion Instability of Ultracompact Stars
197(1)
5.8.2 Supporting the Black-Hole Paradigm: Instabilities of Black-Hole Mimickers
198(4)
5.9 Open Issues
202(11)
References
204(9)
6 Conclusions and Outlook
213(2)
A List of Publicly Available Codes
215(2)
B Analytic Computation of the Amplification Coefficients
217(4)
C Angular Momentum and Energy
221(2)
C.1 Energy and Angular Momentum Fluxes at the Horizon
222(1)
D Electromagnetic Fluctuations Around a Rotating Black Hole Enclosed in a Mirror
223(6)
E Hartle-Thorne Formalism for Slowly-Rotating Spacetimes and Perturbations
229(4)
E.1 Background
229(1)
E.2 Perturbations of a Slowly-Rotating Object
230(3)
E.2.1 Scalar Perturbations of a Slowly-Rotating Star
231(2)
F WKB Analysis of Long-Lived and Unstable Modes of Ultracompact Objects
233
References
236
Vitor Cardoso is an Assistant Professor (``Com Agregaēćo'') of Physics at Instituto Superior Técnico, Portugal and a Visiting Fellow at the Perimeter Institute, Canada. He is an ERC grantee of the European Research Council and an outstanding Referee for the American Physical Society. His research interests include black hole physics, gravitational-wave physics and General Relativity.

Paolo Pani is a Marie Curie Fellow at Sapienza University of Rome and a FCT Researcher at CENTRA-IST in Lisbon. He is an outstanding Referee for the American Physical Society and a former research fellow at the Harvard-Smithsonian Center for Astrophysics. His research interests include black holes, foundations of General Relativity and relativistic astrophysics. In 2011, his PhD thesis on blackhole perturbation theory was awarded the Fubini Prize of the Italian Institute for Nuclear Physics.

Richard Brito is completing a doctorate in the gravity group at CENTRA-IST in Lisbon. His research interests include black holes, General Relativity and alternative theories of gravity. His PhD thesis focusses on studying dark matter candidates and alternative theories of gravity using compact objects. In 2013 he was awarded the "Prémio Estķmulo ą Investigaēćo" by the Fundaēćo Calouste Gulbenkian, a prize rewarding young researchers with strong research proposals.