Atnaujinkite slapukų nuostatas

Supersingular p-adic L-functions, Maass-Shimura Operators and Waldspurger Formulas: (AMS-212) [Minkštas viršelis]

  • Formatas: Paperback / softback, 276 pages, aukštis x plotis: 235x156 mm
  • Serija: Annals of Mathematics Studies
  • Išleidimo metai: 09-Nov-2021
  • Leidėjas: Princeton University Press
  • ISBN-10: 0691216460
  • ISBN-13: 9780691216461
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 276 pages, aukštis x plotis: 235x156 mm
  • Serija: Annals of Mathematics Studies
  • Išleidimo metai: 09-Nov-2021
  • Leidėjas: Princeton University Press
  • ISBN-10: 0691216460
  • ISBN-13: 9780691216461
Kitos knygos pagal šią temą:

A groundbreaking contribution to number theory that unifies classical and modern results

This book develops a new theory of p-adic modular forms on modular curves, extending Katz's classical theory to the supersingular locus. The main novelty is to move to infinite level and extend coefficients to period sheaves coming from relative p-adic Hodge theory. This makes it possible to trivialize the Hodge bundle on the infinite-level modular curve by a "canonical differential" that restricts to the Katz canonical differential on the ordinary Igusa tower. Daniel Kriz defines generalized p-adic modular forms as sections of relative period sheaves transforming under the Galois group of the modular curve by weight characters. He introduces the fundamental de Rham period, measuring the position of the Hodge filtration in relative de Rham cohomology. This period can be viewed as a counterpart to Scholze's Hodge-Tate period, and the two periods satisfy a Legendre-type relation. Using these periods, Kriz constructs splittings of the Hodge filtration on the infinite-level modular curve, defining p-adic Maass-Shimura operators that act on generalized p-adic modular forms as weight-raising operators. Through analysis of the p-adic properties of these Maass-Shimura operators, he constructs new p-adic L-functions interpolating central critical Rankin-Selberg L-values, giving analogues of the p-adic L-functions of Katz, Bertolini-Darmon-Prasanna, and Liu-Zhang-Zhang for imaginary quadratic fields in which p is inert or ramified. These p-adic L-functions yield new p-adic Waldspurger formulas at special values.

Preface xi
Acknowledgments xv
1 Introduction
1(26)
1.1 Previous constructions and Katz's theory of p-adic modular forms on the ordinary locus
1(5)
1.2 Outline of our theory of p-adic analysis on the supersingular locus and construction of p-adic L-functions
6(17)
1.3 Main results
23(2)
1.4 Some remarks on other works in supersingular Iwasawa theory
25(2)
2 Preliminaries: Generalities
27(36)
2.1 Grothendieck sites and topoi
27(2)
2.2 Pro-categories
29(1)
2.3 Adic spaces
30(9)
2.4 (Pre-)adic spaces and (pre)perfectoid spaces
39(4)
2.5 Some complements on inverse limits of (pre-)adic spaces
43(2)
2.6 The proetale site of an adic space
45(4)
2.7 Period sheaves
49(6)
2.8 The proetale "constant sheaf" ZP,y
55(1)
2.9 BR y-local systems, OB+dR,y-modules with connection, and the general de Rham comparison theorem
56(7)
3 Preliminaries: Geometry of the infinite-level modular curve
63(20)
3.1 The infinite-level modular curve
63(3)
3.2 Relative etale cohomology and the Weil pairing
66(1)
3.3 The GL2(Qp)-action on y (and Y)
67(2)
3.4 The Hodge-Tate period and the Hodge-Tate period map
69(3)
3.5 The Lubin-Tate period on the supersingular locus
72(5)
3.6 The relative Hodge-Tate filtration
77(1)
3.7 The fake Hasse invariant
78(1)
3.8 Relative de Rham cohomology and the Hodge-de Rham filtration
79(1)
3.9 Relative p-adic de Rham comparison theorem applied to A → Y
80(3)
4 The fundamental de Rham periods
83(35)
4.1 A proetale local description of OB(+)dR
83(2)
4.2 The fundamental de Rham periods
85(1)
4.3 GL2(Qp)-transformation properties of the fundamental de Rham periods
86(3)
4.4 The p-adic Legendre relation
89(5)
4.5 Relation to Colmez's "p-adic period pairing"
94(3)
4.6 Relation to classical (Serre-Tate) theory on the ordinary locus
97(12)
4.7 The Kodaira-Spencer isomorphism
109(3)
4.8 The fundamental de Rham period zdr
112(2)
4.9 The canonical differential
114(4)
5 The p-adic Maass-Shimura operator
118(44)
5.1 The "horizontal" lifting of the Hodge-Tate filtration
118(4)
5.2 The "horizontal" relative Hodge-Tate decomposition over OΔ
122(4)
5.3 Definition of the p-adic Maass-Shimura operator
126(1)
5.4 The p-adic Maass-Shimura operator in coordinates and generalized p-adic modular forms
127(4)
5.5 The p-adic Maass-Shimura operator with "nearly holomorphic coefficients"
131(7)
5.6 The relative Hodge-Tate decomposition over O†Δ
138(3)
5.7 The p-adic Maass-Shimura operator in coordinates and generalized p-adic nearly holomorphic modular forms
141(6)
5.8 Relation of djk and (d†κ)j to the ordinary Atkin-Serre operator djk AS and Katz's p-adic modular forms
147(3)
5.9 Comparison between the complex and p-adic Maass-Shimura operators at CM points
150(9)
5.10 Comparison of algeraic Maass-Shimura derivatives on different levels
159(3)
6 p-adic analysis of the p-adic Maass-Shimura operators
162(35)
6.1 qdR-expansions
162(10)
6.2 Relation between qdR-expansions and Serre-Tate expansions
172(2)
6.3 Integrality properties of qdR-expansions: the Dieudonne-Dwork lemma
174(6)
6.4 Integral structures on stalks of intermediate period sheaves between Oδ and Oδ
180(2)
6.5 The p-adic Maass-Shimura operator θjk in qdR-coordinates
182(2)
6.6 Integrality of qdR-expansions and the b-operator
184(2)
6.7 p-adic analytic properties of p-adic Maass-Shimura operators
186(11)
7 Bounding periods at supersingular CM points
197(19)
7.1 Periods of supersingular CM points
197(8)
7.2 Weights
205(3)
7.3 Good CM points
208(8)
8 Supersingular Rankin-Selberg p-adic L-functions
216(20)
8.1 Preliminaries for the construction
216(3)
8.2 Construction of the p-adic L-function
219(9)
8.3 Interpolation
228(8)
8.3.1 Interpolation formula
228(6)
8.3.2 Interpolation formula
234(2)
9 The p-adic Waldspurger formula
236(15)
9.1 Coleman integration
237(1)
9.2 Coleman primitives in our situation
237(6)
9.3 The p-adic Waldspurger formula
243(5)
9.4 p-adic Kronecker limit formula
248(3)
Bibliography 251(6)
Index 257
Daniel J. Kriz is an instructor in pure mathematics and a National Science Foundation postdoctoral fellow at the Massachusetts Institute of Technology.