Atnaujinkite slapukų nuostatas

El. knyga: Surfaces in Classical Geometries: A Treatment by Moving Frames

  • Formatas: PDF+DRM
  • Serija: Universitext
  • Išleidimo metai: 20-Apr-2016
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319270760
  • Formatas: PDF+DRM
  • Serija: Universitext
  • Išleidimo metai: 20-Apr-2016
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319270760

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Designed for intermediate graduate studies, this text will broaden students' core knowledge of differential geometry providing foundational material to relevant topics in classical differential geometry. The method of moving frames, a natural means for discovering and proving important results, provides the basis of treatment for topics discussed. Its application in many areas helps to connect the various geometries and to uncover many deep relationships, such as the Lawson correspondence.  The nearly 300 problems and exercises range from simple applications to open problems. Exercises are embedded in the text as essential parts of the exposition. Problems are collected at the end of each chapter; solutions to select problems are given at the end of the book. Mathematica®, Matlab™,  and Xfig are used to illustrate selected concepts and results. The careful selection of results serves to show the reader how to prove the most important theorems in the subject, which may become the foundation of future progress.


The book pursues significant results beyond the standard topics of an introductory differential geometry course. A sample of these results includes the Willmore functional, the classification of cyclides of Dupin, the Bonnet problem, constant mean curvature immersions, isothermic immersions, and the duality between minimal surfaces in Euclidean space and constant mean curvature surfaces in hyperbolic space. The book concludes with Lie sphere geometry and its spectacular result that all cyclides of Dupin are Lie sphere equivalent. The exposition is restricted to curves and surfaces in order to emphasize the geometric interpretation of invariants and other constructions. Working in low dimensions helps students develop a strong geometric intuition. Aspiring geometers will acquire a working knowledge of curves and surfaces in classical geometries. Students will learn the invariants of conformal geometry and how these relate to the invariants of Euclidean, spherical, and hyperbolic geometry. They will learn the fundamentals of Lie sphere geometry, which require the notion of Legendre immersions of a contact structure. Prerequisites include a completed one semester standard course on manifold theory.

Recenzijos

300 problems and exercices, from simple until open problems, are contained in this book and they are the essential part of it. In conclusion, it is an interesting book written carefully and with originality. Undoubtedly its reading will be very helpful to any geometer. (Charalampos Charitos, zbMATH 1347.53001, 2016)

1 Introduction
1(6)
2 Lie Groups
7(22)
2.1 Lie group actions
7(3)
2.2 Transitive group actions
10(5)
2.3 A slice theorem
15(4)
2.4 Distributions
19(2)
2.5 Cartan--Darboux
21(8)
Problems
26(3)
3 Theory of Moving Frames
29(18)
3.1 Bundle of linear frames
29(3)
3.2 Moving frames
32(3)
3.3 Frame reduction procedure
35(8)
3.4 Homogeneous submanifolds
43(4)
Problems
46(1)
4 Euclidean Geometry
47(66)
4.1 The Euclidean group
48(2)
4.2 Surface theory of Gauss
50(11)
4.2.1 Surface theory of Darboux, Cartan, and Chern
52(9)
4.3 Moving frame reductions
61(8)
4.3.1 Summary of frame reduction and structure equations
68(1)
4.3.2 The criterion form
68(1)
4.4 Bonnet's existence and congruence theorems
69(5)
4.5 Tangent and curvature spheres
74(5)
4.6 The Gauss map
79(3)
4.7 Isoparametric, Dupin, and canal immersions
82(7)
4.7.1 Surfaces of revolution
85(4)
4.8 New immersions from old
89(9)
4.8.1 Parallel transformations
91(3)
4.8.2 Tubes
94(1)
4.8.3 Curvature spheres along canal immersions
95(3)
4.9 Elasticae
98(2)
4.10 Willmore problems
100(13)
4.10.1 Willmore conjecture
103(2)
4.10.2 Willmore immersions
105(1)
Problems
106(7)
5 Spherical Geometry
113(42)
5.1 Constant positive curvature geometry of the sphere
113(4)
5.2 Moving frame reductions
117(3)
5.2.1 Summary of frame reduction and structure equations
119(1)
5.3 Tangent and curvature spheres
120(5)
5.4 Isoparametric, Dupin, and canal immersions
125(4)
5.4.1 Surfaces of revolution
128(1)
5.5 Tubes, parallel transformations, focal loci
129(1)
5.6 Stereographic projection
130(7)
5.7 Hopf cylinders
137(6)
5.8 Willmore tori
143(12)
Problems
149(6)
6 Hyperbolic Geometry
155(34)
6.1 The Minkowski space model
155(6)
6.2 The sphere at infinity
161(4)
6.2.1 Conformal structure on S2∞
163(2)
6.3 Surfaces in H3
165(2)
6.4 Moving frame reductions
167(2)
6.4.1 Summary of frame reduction and structure equations
168(1)
6.5 Totally umbilic immersions
169(1)
6.6 Poincare Ball model
170(5)
6.7 Tangent and curvature spheres
175(2)
6.8 Dupin and isoparametric immersions
177(2)
6.9 Curves
179(1)
6.10 Surfaces of revolution
179(2)
6.11 Tubes and parallel transformations
181(2)
6.12 Hyperbolic Gauss map
183(6)
Problems
184(5)
7 Complex Structure
189(32)
7.1 Induced complex structure
189(8)
7.2 Decomposition of forms into bidegrees
197(3)
7.2.1 Curvature in terms of the complex coordinate
199(1)
7.3 Riemann surface examples
200(8)
7.4 Adapted frames in space forms
208(5)
7.5 Constant H and Lawson correspondence
213(2)
7.6 Calculating the invariants
215(6)
7.6.1 Dependence on the complex coordinate
217(2)
Problems
219(2)
8 Minimal Immersions in Euclidean Space
221(52)
8.1 The area functional
221(1)
8.2 A brief history of minimal surfaces
222(2)
8.3 First variation of the area functional
224(4)
8.4 Enneper--Weierstrass representation
228(6)
8.4.1 Holomorphic isotropic 1-forms
229(2)
8.4.2 Parametrization of isotropic vectors
231(2)
8.4.3 Weierstrass data and associates
233(1)
8.5 Examples
234(13)
8.6 The Ricci condition
247(1)
8.7 Image of the Gauss map
248(3)
8.8 Finite total curvature
251(2)
8.9 Goursat transforms
253(8)
8.10 Frames along minimal curves
261(12)
Problems
270(3)
9 Isothermic Immersions
273(24)
9.1 Background and motivation
273(1)
9.2 Classical isothermic immersions
274(8)
9.3 Affine structures
282(1)
9.4 Christoffel transforms
283(14)
9.4.1 Local construction
286(1)
9.4.2 Global construction
287(7)
Problems
294(3)
10 The Bonnet Problem
297(50)
10.1 Background
297(2)
10.2 The deformation quadratic differential
299(3)
10.3 Bonnet versus proper Bonnet
302(10)
10.3.1 Bonnet cylinders
304(4)
10.3.2 Bonnet cones
308(4)
10.4 E(3)-deformations
312(5)
10.4.1 The deformation form
313(3)
10.4.2 Specifying the deformation form
316(1)
10.5 Quaternions
317(7)
10.5.1 Spin frames
319(2)
10.5.2 Similarity deformations
321(3)
10.6 The KPP construction
324(5)
10.7 KPP construction examples
329(4)
10.7.1 The Bonnet pair generated by a cylinder
329(2)
10.7.2 The Bonnet pair generated by a cone
331(2)
10.8 Cartan's Bonnet criterion
333(5)
10.9 Proper Bonnet immersions
338(6)
10.10 Cartan's Classification
344(3)
Problems
345(2)
11 CMC 1 Surfaces in H3
347(42)
11.1 Hermitian matrix model
348(1)
11.2 The Universal Cover
348(5)
11.3 Sphere at infinity of H(3)
353(1)
11.4 Surfaces in H(3)
354(6)
11.5 Null immersions
360(8)
11.6 Solutions
368(3)
11.6.1 Left-invariant solutions
368(1)
11.6.2 Right-invariant solutions
369(1)
11.6.3 How to solve dGG-~1 = γ
370(1)
11.7 Spinor data
371(7)
11.8 Weierstrass and spinor data
378(1)
11.9 Bryant spheres with smooth ends
379(10)
Problems
386(3)
12 Mobius Geometry
389(42)
12.1 Local conformal diffeomorphisms
389(4)
12.2 Mobius space
393(4)
12.3 Mobius frames
397(6)
12.4 Mobius frames along a surface
403(9)
12.4.1 Second order frame fields
408(4)
12.5 Space forms in Mobius geometry
412(6)
12.5.1 Spherical geometry
413(2)
12.5.2 Euclidean geometry
415(1)
12.5.3 Hyperbolic geometry
416(2)
12.6 Spheres in Mobius space
418(5)
12.7 Canal and Dupin immersions
423(8)
Problems
426(5)
13 Complex Structure and Mobius Geometry
431(38)
13.1 Conformal immersions
431(2)
13.2 Adapted frames
433(6)
13.3 Dependence on z
439(6)
13.3.1 Calculating the Invariants
442(3)
13.4 Curvature spheres
445(4)
13.5 Complex structure and space forms
449(7)
13.5.1 Surfaces in Euclidean space
449(3)
13.5.2 Surfaces in S3
452(3)
13.5.3 Surfaces in H3
455(1)
13.6 Conformal area and Willmore functionals
456(3)
13.7 Conformal Gauss map
459(1)
13.8 Relating the invariants
460(9)
Problems
466(3)
14 Isothermic Immersions into Mobius Space
469(24)
14.1 Isothermic immersions
469(5)
14.2 T-Transforms and Calapso's equation
474(5)
14.3 Mobius deformation
479(5)
14.4 Special isothermic immersions
484(5)
14.5 Thomsen's Theorem
489(1)
14.6 Hopf cylinders are not generically isothermic
490(3)
Problems
492(1)
15 Lie Sphere Geometry
493(46)
15.1 Oriented spheres in S3
493(6)
15.2 Pencils of oriented spheres
499(3)
15.3 Lie sphere transformations
502(3)
15.4 Lie sphere frames
505(5)
15.5 Legendre submanifolds
510(4)
15.6 Tangent and curvature spheres
514(3)
15.7 Frame reductions
517(3)
15.8 Frame reductions for generic immersions
520(4)
15.9 Frame reductions for Dupin immersions
524(15)
Problems
534(5)
Solutions to Select Problems 539(12)
References 551(8)
Index 559
Gary R. Jensen is currently professor of mathematics at Washington University in St. Louis, Missouri. Emilio Musso is professor of mathematics at the Politecnico di Torino, Torino, Italy and Lorenzo Nicolodi is professor of mathematics at the Univerita di Parma, Parma, Italy.