|
|
1 | (6) |
|
|
7 | (22) |
|
|
7 | (3) |
|
2.2 Transitive group actions |
|
|
10 | (5) |
|
|
15 | (4) |
|
|
19 | (2) |
|
|
21 | (8) |
|
|
26 | (3) |
|
3 Theory of Moving Frames |
|
|
29 | (18) |
|
3.1 Bundle of linear frames |
|
|
29 | (3) |
|
|
32 | (3) |
|
3.3 Frame reduction procedure |
|
|
35 | (8) |
|
3.4 Homogeneous submanifolds |
|
|
43 | (4) |
|
|
46 | (1) |
|
|
47 | (66) |
|
|
48 | (2) |
|
4.2 Surface theory of Gauss |
|
|
50 | (11) |
|
4.2.1 Surface theory of Darboux, Cartan, and Chern |
|
|
52 | (9) |
|
4.3 Moving frame reductions |
|
|
61 | (8) |
|
4.3.1 Summary of frame reduction and structure equations |
|
|
68 | (1) |
|
|
68 | (1) |
|
4.4 Bonnet's existence and congruence theorems |
|
|
69 | (5) |
|
4.5 Tangent and curvature spheres |
|
|
74 | (5) |
|
|
79 | (3) |
|
4.7 Isoparametric, Dupin, and canal immersions |
|
|
82 | (7) |
|
4.7.1 Surfaces of revolution |
|
|
85 | (4) |
|
4.8 New immersions from old |
|
|
89 | (9) |
|
4.8.1 Parallel transformations |
|
|
91 | (3) |
|
|
94 | (1) |
|
4.8.3 Curvature spheres along canal immersions |
|
|
95 | (3) |
|
|
98 | (2) |
|
|
100 | (13) |
|
4.10.1 Willmore conjecture |
|
|
103 | (2) |
|
4.10.2 Willmore immersions |
|
|
105 | (1) |
|
|
106 | (7) |
|
|
113 | (42) |
|
5.1 Constant positive curvature geometry of the sphere |
|
|
113 | (4) |
|
5.2 Moving frame reductions |
|
|
117 | (3) |
|
5.2.1 Summary of frame reduction and structure equations |
|
|
119 | (1) |
|
5.3 Tangent and curvature spheres |
|
|
120 | (5) |
|
5.4 Isoparametric, Dupin, and canal immersions |
|
|
125 | (4) |
|
5.4.1 Surfaces of revolution |
|
|
128 | (1) |
|
5.5 Tubes, parallel transformations, focal loci |
|
|
129 | (1) |
|
5.6 Stereographic projection |
|
|
130 | (7) |
|
|
137 | (6) |
|
|
143 | (12) |
|
|
149 | (6) |
|
|
155 | (34) |
|
6.1 The Minkowski space model |
|
|
155 | (6) |
|
6.2 The sphere at infinity |
|
|
161 | (4) |
|
6.2.1 Conformal structure on S2∞ |
|
|
163 | (2) |
|
|
165 | (2) |
|
6.4 Moving frame reductions |
|
|
167 | (2) |
|
6.4.1 Summary of frame reduction and structure equations |
|
|
168 | (1) |
|
6.5 Totally umbilic immersions |
|
|
169 | (1) |
|
|
170 | (5) |
|
6.7 Tangent and curvature spheres |
|
|
175 | (2) |
|
6.8 Dupin and isoparametric immersions |
|
|
177 | (2) |
|
|
179 | (1) |
|
6.10 Surfaces of revolution |
|
|
179 | (2) |
|
6.11 Tubes and parallel transformations |
|
|
181 | (2) |
|
6.12 Hyperbolic Gauss map |
|
|
183 | (6) |
|
|
184 | (5) |
|
|
189 | (32) |
|
7.1 Induced complex structure |
|
|
189 | (8) |
|
7.2 Decomposition of forms into bidegrees |
|
|
197 | (3) |
|
7.2.1 Curvature in terms of the complex coordinate |
|
|
199 | (1) |
|
7.3 Riemann surface examples |
|
|
200 | (8) |
|
7.4 Adapted frames in space forms |
|
|
208 | (5) |
|
7.5 Constant H and Lawson correspondence |
|
|
213 | (2) |
|
7.6 Calculating the invariants |
|
|
215 | (6) |
|
7.6.1 Dependence on the complex coordinate |
|
|
217 | (2) |
|
|
219 | (2) |
|
8 Minimal Immersions in Euclidean Space |
|
|
221 | (52) |
|
|
221 | (1) |
|
8.2 A brief history of minimal surfaces |
|
|
222 | (2) |
|
8.3 First variation of the area functional |
|
|
224 | (4) |
|
8.4 Enneper--Weierstrass representation |
|
|
228 | (6) |
|
8.4.1 Holomorphic isotropic 1-forms |
|
|
229 | (2) |
|
8.4.2 Parametrization of isotropic vectors |
|
|
231 | (2) |
|
8.4.3 Weierstrass data and associates |
|
|
233 | (1) |
|
|
234 | (13) |
|
|
247 | (1) |
|
8.7 Image of the Gauss map |
|
|
248 | (3) |
|
8.8 Finite total curvature |
|
|
251 | (2) |
|
|
253 | (8) |
|
8.10 Frames along minimal curves |
|
|
261 | (12) |
|
|
270 | (3) |
|
|
273 | (24) |
|
9.1 Background and motivation |
|
|
273 | (1) |
|
9.2 Classical isothermic immersions |
|
|
274 | (8) |
|
|
282 | (1) |
|
9.4 Christoffel transforms |
|
|
283 | (14) |
|
|
286 | (1) |
|
9.4.2 Global construction |
|
|
287 | (7) |
|
|
294 | (3) |
|
|
297 | (50) |
|
|
297 | (2) |
|
10.2 The deformation quadratic differential |
|
|
299 | (3) |
|
10.3 Bonnet versus proper Bonnet |
|
|
302 | (10) |
|
|
304 | (4) |
|
|
308 | (4) |
|
|
312 | (5) |
|
10.4.1 The deformation form |
|
|
313 | (3) |
|
10.4.2 Specifying the deformation form |
|
|
316 | (1) |
|
|
317 | (7) |
|
|
319 | (2) |
|
10.5.2 Similarity deformations |
|
|
321 | (3) |
|
10.6 The KPP construction |
|
|
324 | (5) |
|
10.7 KPP construction examples |
|
|
329 | (4) |
|
10.7.1 The Bonnet pair generated by a cylinder |
|
|
329 | (2) |
|
10.7.2 The Bonnet pair generated by a cone |
|
|
331 | (2) |
|
10.8 Cartan's Bonnet criterion |
|
|
333 | (5) |
|
10.9 Proper Bonnet immersions |
|
|
338 | (6) |
|
10.10 Cartan's Classification |
|
|
344 | (3) |
|
|
345 | (2) |
|
|
347 | (42) |
|
11.1 Hermitian matrix model |
|
|
348 | (1) |
|
|
348 | (5) |
|
11.3 Sphere at infinity of H(3) |
|
|
353 | (1) |
|
|
354 | (6) |
|
|
360 | (8) |
|
|
368 | (3) |
|
11.6.1 Left-invariant solutions |
|
|
368 | (1) |
|
11.6.2 Right-invariant solutions |
|
|
369 | (1) |
|
11.6.3 How to solve dGG-~1 = γ |
|
|
370 | (1) |
|
|
371 | (7) |
|
11.8 Weierstrass and spinor data |
|
|
378 | (1) |
|
11.9 Bryant spheres with smooth ends |
|
|
379 | (10) |
|
|
386 | (3) |
|
|
389 | (42) |
|
12.1 Local conformal diffeomorphisms |
|
|
389 | (4) |
|
|
393 | (4) |
|
|
397 | (6) |
|
12.4 Mobius frames along a surface |
|
|
403 | (9) |
|
12.4.1 Second order frame fields |
|
|
408 | (4) |
|
12.5 Space forms in Mobius geometry |
|
|
412 | (6) |
|
12.5.1 Spherical geometry |
|
|
413 | (2) |
|
12.5.2 Euclidean geometry |
|
|
415 | (1) |
|
12.5.3 Hyperbolic geometry |
|
|
416 | (2) |
|
12.6 Spheres in Mobius space |
|
|
418 | (5) |
|
12.7 Canal and Dupin immersions |
|
|
423 | (8) |
|
|
426 | (5) |
|
13 Complex Structure and Mobius Geometry |
|
|
431 | (38) |
|
13.1 Conformal immersions |
|
|
431 | (2) |
|
|
433 | (6) |
|
|
439 | (6) |
|
13.3.1 Calculating the Invariants |
|
|
442 | (3) |
|
|
445 | (4) |
|
13.5 Complex structure and space forms |
|
|
449 | (7) |
|
13.5.1 Surfaces in Euclidean space |
|
|
449 | (3) |
|
|
452 | (3) |
|
|
455 | (1) |
|
13.6 Conformal area and Willmore functionals |
|
|
456 | (3) |
|
|
459 | (1) |
|
13.8 Relating the invariants |
|
|
460 | (9) |
|
|
466 | (3) |
|
14 Isothermic Immersions into Mobius Space |
|
|
469 | (24) |
|
14.1 Isothermic immersions |
|
|
469 | (5) |
|
14.2 T-Transforms and Calapso's equation |
|
|
474 | (5) |
|
|
479 | (5) |
|
14.4 Special isothermic immersions |
|
|
484 | (5) |
|
|
489 | (1) |
|
14.6 Hopf cylinders are not generically isothermic |
|
|
490 | (3) |
|
|
492 | (1) |
|
|
493 | (46) |
|
15.1 Oriented spheres in S3 |
|
|
493 | (6) |
|
15.2 Pencils of oriented spheres |
|
|
499 | (3) |
|
15.3 Lie sphere transformations |
|
|
502 | (3) |
|
|
505 | (5) |
|
15.5 Legendre submanifolds |
|
|
510 | (4) |
|
15.6 Tangent and curvature spheres |
|
|
514 | (3) |
|
|
517 | (3) |
|
15.8 Frame reductions for generic immersions |
|
|
520 | (4) |
|
15.9 Frame reductions for Dupin immersions |
|
|
524 | (15) |
|
|
534 | (5) |
Solutions to Select Problems |
|
539 | (12) |
References |
|
551 | (8) |
Index |
|
559 | |