Atnaujinkite slapukų nuostatas

El. knyga: Survey Sampling

(Indian Statistical Institute, Kolkata, India)
  • Formatas: 240 pages
  • Išleidimo metai: 28-Sep-2018
  • Leidėjas: Chapman & Hall/CRC
  • Kalba: eng
  • ISBN-13: 9781351650724
  • Formatas: 240 pages
  • Išleidimo metai: 28-Sep-2018
  • Leidėjas: Chapman & Hall/CRC
  • Kalba: eng
  • ISBN-13: 9781351650724

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This venture aspires to be a mix of a textbook at the undergraduate and postgraduate levels and a monograph to catch the attention of researchers in theoretical and practical aspects of survey sampling at diverse levels demanding a comprehensive review of what useful materials have preceded, with an eye to what beacons to the depth of the imminent future.

Acknowledgment xi
About the author xiii
Preface xv
My plea for this composition and my target readership xvii
Introduction xxi
Chapter 1 Certain Essential Preliminaries
1(18)
1.0 Summary
1(1)
1.1 Concepts of Population, Sample, Survey, Census, Sampling: Design and Schemes, Estimator and Strategy
1(4)
1.2 Properties of Estimators and Strategies; Different Inferential Approaches: Design-Based, Predictive, Super-Population Model-Based, Model-Assisted and Bayesian
5(5)
1.3 Sufficiency, Minimal Sufficiency and Bayesian Sufficiency
10(3)
1.4 Classes of Estimators
13(2)
1.5 Godambe's and Basu's Theorems on Non-Existence of UMV Estimators
15(2)
1.6 Hanurav's (1966) and Hege's (1965) Exceptions and Remedial Steps
17(2)
Chapter 2 Further Essentials for Unstratifled Uni-Stage Cases
19(12)
2.0 Summary
19(1)
2.1 Labels: Their Roles and Related Controversies
20(2)
2.2 Minimaxity
22(1)
2.3 Necessary and Sufficient Conditions for Existence of an Unbiased Estimator for a Total and of a Variance Estimator
23(1)
2.4 Determination of Sample-Size
24(3)
2.5 Varying Probability Sampling Methods and Associated Estimation Procedures
27(4)
Chapter 3 More in Design-Based Sampling
31(36)
3.0 Summary
31(1)
3.1 Stratified Sampling and Other Sampling and Estimation Procedures
31(25)
3.2 Replicated Sampling and Its Applications
56(1)
3.3 Controlled Sampling
57(3)
3.4 Multi-Phase Sampling: Ratio and Regression Estimation
60(3)
3.5 Sampling on Successive Occasions and Panel Sampling
63(3)
3.6 Non-Sampling Error and Non-Response Error Problems: Weighting Adjustments and Imputation Techniques
66(1)
Chapter 4 Super-Population Modeling and Its Various Uses
67(38)
4.0 Summary
67(1)
4.1 Super-Population Modeling
67(9)
4.2 Linearization Technique
76(1)
4.3 Small Area Estimation
77(4)
4.4 Jack-Knife
81(2)
4.5 Bootstrap in Finite Population Sampling
83(10)
4.6 Balanced Repeated Replication (BRR)
93(3)
4.7 Kriging or Spatial Prediction
96(1)
4.8 Estimating Equations and Estimating Functions
97(5)
4.9 Basu's (1971) Circus Example
102(3)
Chapter 5 Indirect Questioning in Sensitive Surveys
105(22)
5.0 Summary
105(1)
5.1 Randomized Response Techniques: General Sampling and Simple Random Sampling with Replacement
105(18)
5.2 A Few Indirect Questioning Techniques Other than RRT's
123(2)
5.3 Three More Indirect Questioning Techniques
125(2)
Chapter 6 Adaptive and Network Sampling
127(10)
6.0 Summary
127(1)
6.1 Adaptive Sampling
127(3)
6.2 Network Sampling
130(2)
6.3 A Live Problem and Application
132(5)
Chapter 7 Inadequate and Multiple Frames
137(8)
7.0 Summary
137(1)
7.1 Sampling from Inadequate Frames
137(4)
7.2 Sampling from Multiple Frames
141(1)
7.3 Conditional Inference
142(3)
Chapter 8 Analytic Studies
145(2)
8.0 Summary
145(1)
8.1 Analytic Studies, Tests of Goodness of Fit, Independence, Homogeneity, Regression and Categorical Analysis
145(2)
Chapter 9 Case Studies
147(12)
9.0 Summary
147(1)
9.1 Case Studies
147(12)
Chapter 10 Lessons and Exercises
159(26)
10.0 Summary
159(1)
10.1 Examples, Exercises and Riders with Complete and Hinted Solutions
159(26)
Chapter 11 Reviews
185(4)
11.0 Summary
185(1)
11.1 Reviews of Various Sampling Schemes
185(4)
Chapter 12 An Appraisal
189(4)
12.0 Epilogue. An Appraisal of the Past, the Current and the Future Possibilities
189(4)
References 193(18)
Index 211
Graduated with honors in statistics, M.A. in Statistics and Ph.D in Statistics from Calcutta University. Did postdoctoral for 2 years in Sydney University. Worked as a full professor 0n 1 January, 1982 in Indian Statistical Institute after serving earlier there as an associate professor and earlier as a lecturer in statistics in Calcutta Universitry and Presidency College in Kolkata. Worked as a visiting professor in Virginia polytechnic & State University in August1989-May 1990, Nebraska Lincoln University in Jan-May 1997, in Delft University in June-August 1985; worked and visited various universities and statistical offices in Canberra Brisbane