Atnaujinkite slapukų nuostatas

El. knyga: Sustainable Agriculture and New Biotechnologies

Edited by (Department of Life Sciences, University of West Indies, Kingston, Jamaica)
  • Formatas: 556 pages
  • Išleidimo metai: 19-Apr-2016
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781439825051
Kitos knygos pagal šią temą:
  • Formatas: 556 pages
  • Išleidimo metai: 19-Apr-2016
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781439825051
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This addition to the Advances in Agroecology series offers a collection on the use of omics technologies in understanding and improving agricultural sustainability in food production. Omics, a relatively new term, encompasses a variety of biotechnologies such as genomics, transcriptomics, proteomics, and metabolomics. The chapters in the book describe many omics, some of which are more applicable than others to sustainable agriculture. A sampling of topics includes: the use of omics databases for plants, characterization and efficient use of plant genetic resources, microbial functionality and diversity in agroecosystems, and metabolomics: a current view on fruit quality in relation to human health. Editor Benkeblia (life sciences, U. of the West Indies, Jamaica) and 74 co-authors contributed to the book. Annotation ©2011 Book News, Inc., Portland, OR (booknews.com)

Taking a broad and innovative informational approach, Sustainable Agriculture and New Biotechnologies is the first book to apply omic technologies to address issues related to understanding and improving agricultural sustainability in the food production process. The transformation from industrial to sustainable agriculture is discussed within the frameworks of new biotechnologies and global environmental changes. While considering this transformation, the book covers:

  • The use of new biotechnologies to help in the creation of more sustainable agricultural practices, including methods in molecular biology, genetic engineering, and the new emerging technologies, such as metabolomics, metagenomics, nutrigenomics, and ionomics
  • The path to reach the goal of the global sustainable agricultural and food production systems in a world of limited natural resources and growing environmental degradation
  • Principles that regulate the new agricultural and food production systems including breeding programs for more sustainable crops, soil management, and environment preservation

It is clear that biotechnological approaches will become increasingly important in the future and that a shift from industrial to a sustainable agriculture will be necessary. While many books tend to make "a quick and easy link" between these two different worlds, Sustainable Agriculture and New Biotechnologies describes exactly how omics can contribute to greater food productivity and security, and agricultural sustainability in the future.

Foreword xi
Preface xiii
Acknowledgments xv
Contributors xvii
Chapter 1 The Use of Omics Databases for Plants
Ayako Suzuki
Keita Suwabe
Kentaro Yano
1.1 Introduction
2(1)
1.2 Information on Web Resources for Databases and Experimental Materials
3(3)
1.3 Genome Projects and Databases
6(1)
1.4 Gene Expression and Coexpressed Gene Databases
7(1)
1.5 Gene Ontology Databases
8(1)
1.6 Eukaryotic Orthologous Group Database
8(1)
1.7 Expressed Sequence Tags, UniGene Sequences and Full-Length cDNAs
8(1)
1.8 Metabolic Pathways
9(1)
1.8.1 KEGG
9(1)
1.8.2 BioCyc
10(1)
1.8.3 Other Pathway Databases
10(1)
1.9 Advanced Technology and Methods for Large-Scale Analyses
10(1)
1.9.1 High-Throughput Sequencing
10(1)
1.9.2 Tiling Array in Arabidopsis
11(1)
1.9.3 Large-Scale Expression Analysis
11(1)
1.10 Genome Annotations and Comparative Genomics for Model Plants
11(8)
1.10.1 Arabidopsis
11(1)
1.10.1.1 The 1001 Genomes Project
11(1)
1.10.1.2 TAIR
12(1)
1.10.1.3 Full-Length cDNA Databases
12(1)
1.10.1.4 PRIMe
12(1)
1.10.2 Rice
13(1)
1.10.2.1 RAP-DB
13(1)
1.10.2.2 The MSU Rice Genome Annotation Project
13(1)
1.10.2.3 KOME
13(1)
1.10.2.4 Oryzabase
13(1)
1.10.2.5 Gramene
14(1)
1.10.2.6 OMAP
14(1)
1.10.2.7 OryzaExpress
14(1)
1.10.3 Solanaceae
15(1)
1.10.3.1 Tomato SBM
15(1)
1.10.3.2 TFGD
15(1)
1.10.3.3 MiBASE
15(1)
1.10.3.4 KaFTom
16(1)
1.10.3.5 PGSC
16(1)
1.10.4 Legumes
16(1)
1.10.5 Brassica
17(1)
1.10.6 Cucurbitaceae
17(1)
1.10.6.1 The Cucumber Genome Initiative
17(1)
1.10.6.2 CuGenDB and Polish Consortium of Cucumber Genome Sequencing
17(1)
1.10.7 Other Plants
17(2)
1.11 Goal to Global Understanding of Biological Events
19(4)
References
19(4)
Chapter 2 High-Throughput Approaches for Characterization and Efficient Use of Plant Genetic Resources
Jaroslava Ovesna
Anna Janska
Sylva Zelenkova
Petr Marsik
2.1 Introduction
23(1)
2.2 Genomic Approaches to Measuring Genetic Diversity
24(1)
2.3 Transcriptomics
25(3)
2.4 Proteomics
28(2)
2.5 Metabolomics
30(2)
2.6 Conclusions
32(10)
Acknowledgements
32(1)
Reference
32(10)
Chapter 3 Breeding for Sustainability Utilizing High-Throughput Genomics to Design Plants for a New Green Revolution
Traci Viinanen
3.1 Introduction
42(1)
3.2 Practicing Sustainable Agriculture
42(3)
3.2.1 The Concept of Sustainable Agriculture
42(1)
3.2.2 Issues and Potential Solutions
43(2)
3.3 Natural Variatio
45(2)
3.3.1 What We Have Learned
45(1)
3.3.2 Beyond One Trait
46(1)
3.4 Domestication and the Future of Selection
47(4)
3.4.1 A Brief History
47(1)
3.4.2 Trade-Offs and Limitations
48(3)
3.5 Intelligent Design
51(2)
3.5.1 Seed Yield
51(1)
3.5.2 Photosynthetic Rate/Capacity
51(1)
3.5.3 Root System
52(1)
3.6 The Land Institute
53(1)
3.7 Case Studies
54(5)
3.7.1 Intermediate Wheatgrass
54(2)
3.7.2 Perennial Rice
56(1)
3.7.3 Sunflowers (Compositae)
57(1)
3.7.4 Other Perennials
58(1)
3.8 Ecosystem Services
59(1)
3.8.1 Economic Valuation
59(1)
3.8.2 Implications for Policy
59(1)
3.9 Concluding Remarks
60(6)
References
61(5)
Chapter 4 Transcription Factors, Gene Regulatory Networks, and Agronomic Traits
John Gray
Erich Grotewold
4.1 Introduction
66(6)
4.1.1 QTLs and TFs
66(1)
4.1.2 TFs and the Domestication of Crops
67(1)
4.1.2.1 Domestication of Maize
68(1)
4.1.2.2 Domestication of Rice
68(1)
4.1.3 Examples of TFs Linked to Other Agronomic Traits
69(1)
4.1.3.1 Flowering Time
69(1)
4.1.3.2 Cold Tolerance
70(1)
4.1.3.3 Plant Architecture
70(1)
4.1.3.4 Metabolite Production
71(1)
4.2 From Genome Sequences to TF Collections
72(6)
4.2.1 General Characteristics
72(1)
4.2.2 Major TF Families in Grasses
73(1)
4.2.2.1 bHLH Family
73(1)
4.2.2.2 AP2-EREBP Family
74(1)
4.2.2.3 Homeodomain (HB) Family
74(1)
4.2.2.4 MYB Family
74(1)
4.2.2.5 bZIP Family
74(1)
4.2.3 TF Databases: Monocot and Dicot
75(1)
4.2.3.1 AGRIS
75(1)
4.2.3.2 GRASSIUS
75(1)
4.2.3.3 PlnTFDB
75(1)
4.2.3.4 PlantTFDB
76(1)
4.2.3.5 SoyDB
76(1)
4.2.3.6 LEGUMETFDB
76(1)
4.2.3.7 DBD
76(1)
4.2.3.8 TRANSFAC® 7.0 Public 2005
76(1)
4.2.4 TFome Collections
77(1)
4.2.5 Synthetic TFs Zinc Fingers for Gene Regulation
77(1)
4.2.6 Use of TFs in Transgenic Crops: Potential versus Practice
78(1)
4.3 Promoters: Indispensable but Elusive
78(3)
4.3.1 Finding Promoters
78(1)
4.3.2 Many Promoters but Few Used
79(1)
4.3.2.1 Promoter Collections
80(1)
4.3.2.2 Tools and Databases for Promoter Analysis
80(1)
4.3.3 Synthetic Promoters
81(1)
4.4 Establishing Gene Regulatory Networks
81(2)
4.4.1 Tools for Establishing Gene Regulatory Networks
81(1)
4.4.1.1 Chromatin Immunoprecipitation (ChIP)-Based Techniques
82(1)
4.4.1.2 Using Fusions of TFs with the Glucocorticoid Receptor
82(1)
4.4.1.3 Yeast One-Hybrid Experiments
82(1)
4.4.1.4 Coexpression Analyses
83(1)
4.4.2 Gene Regulatory Networks
83(1)
4.5 The Complicating Issues of Heterosis and Epigenetics
83(1)
4.6 Future Perspectives
84(11)
References
85(10)
Chapter 5 Contribution of `Omics' Approaches to Sustainable Herbivore Production
Jean-Francois Hocquette
Hamid Boudra
Isabelle Cassar-Malek
Christine Leroux
Brigitte Picard
Isabelle Savary-Auzeloux
Laurence Bernard
Agnes Cornu
Denys Durand
Anne Ferlay
Dominique Gruffat
Diego P. Morgavi
Claudia Terlouw
5.1 Introduction
95(1)
5.2 Principles of `Omics' Approaches
96(2)
5.2.1 Study of Animal Transcripts
97(1)
5.2.2 Study of Animal Proteins
97(1)
5.2.3 Study of Animal Metabolites
98(1)
5.3 Physiological Performance and Metabolic Efficiency
98(4)
5.3.1 Muscle Development
98(1)
5.3.2 Regulation of Gene Expression by Nutrients
99(3)
5.3.3 Interactions between Tissues and Organs
102(1)
5.4 Limitation of Nitrogen Waste Discharge into the Environment
102(1)
5.5 Metabolomics to Help Mycotoxicosis Diagnosis
103(1)
5.6 Strategies for Improvement of the Quality of Dairy and Meat Products
104(5)
5.6.1 Mechanisms of Bioconversion and Stability of Long-Chain FAs
104(3)
5.6.2 Characterising the Qualities of Animal Products through Micronutrient Analysis
107(1)
5.6.3 Meat Tenderness Predictors
107(2)
5.7 Pre-Slaughter Stress
109(2)
5.8 Concluding Remarks
111(7)
References
111(7)
Chapter 6 Mining Omic Technologies and Their Application to Sustainable Agriculture and Food Production Systems
Noureddine Benkeblia
6.1 Introduction
118(1)
6.2 Sustainable Agriculture
119(1)
6.3 Food Production in Sustainable Agricultural System
119(2)
6.3.1 Soil Degradation
119(1)
6.3.2 Cropland and Yield Losses
120(1)
6.3.3 Water Pollution and Overpumping
121(1)
6.3.4 Overfishing
121(1)
6.4 Organic Food Production and Agricultural Biotechnology
121(1)
6.5 Route of Omic Technologies to Global and Agricultural Sustainability
122(1)
6.6 Metabolomics
122(3)
6.6.1 Metabolomics for Biotic and Abiotic Stresses Assessment
122(2)
6.6.2 Metabolomics for Food Quality Attributes, Microbiology and Nutrition
124(1)
6.6.3 Metabolomics and Environmental Concerns
124(1)
6.7 Ionomics
125(2)
6.7.1 What Is the Concept of `Ionomics'?
125(1)
6.7.2 Plant Ionome
125(1)
6.7.3 Heavy Metals and Ionomics Approaches in Phytoremediation
126(1)
6.8 Metagenomics
127(3)
6.8.1 What Is Metagenomics?
127(1)
6.8.2 Metagenomics and Soil Science
128(1)
6.8.3 Shift from Metagenomics to Industry
129(1)
6.9 Omics and Soil Science
130(7)
6.9.1 Omics-Pipe from Soil Fertility to Agricultural Sustainability
130(1)
6.9.2 Macronutrients
131(1)
6.9.2.1 Nitrogen
131(1)
6.9.2.2 Phosphorus
131(1)
6.9.2.3 Potassium
132(1)
6.9.2.4 Sulphur
132(1)
6.9.2.5 Calcium
133(1)
6.9.2.6 Magnesium
133(1)
6.9.3 Micronutrients
134(1)
6.9.3.1 Boron
134(1)
6.9.3.2 Chlorine
134(1)
6.9.3.3 Copper
135(1)
6.9.3.4 Iron
135(1)
6.9.3.5 Manganese
136(1)
6.9.3.6 Molybdenum
136(1)
6.9.3.7 Zinc
137(1)
6.10 Omics and Rhizosphere Sustainability: The Microworld in the Macroworld
137(1)
6.11 Concluding Remarks
138(11)
References
139(10)
Chapter 7 Identification of Molecular Processes Underlying Abiotic Stress Plants Adaptation Using `Omics' Technologies
Urmila Basu
7.1 Introduction
149(2)
7.1.1 Genotype/Environment Interaction
150(1)
7.1.2 Model Systems and High-Throughput Technologies
150(1)
7.2 Functional Genomics to Understand the Gene Regulatory Networks Involved in Abiotic Stress-Tolerance Mechanisms
151(5)
7.2.1 Plant Engineering for Analysis of the Stress-Tolerance Mechanism
152(2)
7.2.2 Comparative Transcriptome Profiling: From EST Libraries and Microarrays to Next-Generation Sequencing
154(1)
7.2.3 Protein Profiling
155(1)
7.3 Reverse Genetics Strategies for the Identification of Abiotic Stress-Resistance Genes
156(2)
7.3.1 Targeted Induced Local Lesions in Genomes (TILLING), T-DNA Insertion Mutants and RNAi
156(2)
7.4 ROS Gene Network and Abiotic Stresses
158(4)
7.4.1 Role of TFs in Oxidative Stress and Abiotic Stress
159(1)
7.4.2 Aluminium Resistance/Tolerance and Its Relation to ROS
160(2)
7.5 Plant MicroRNA and Abiotic Stresses
162(2)
7.6 Conclusions and Future Directions
164(9)
References
165(8)
Chapter 8 Rhizosphere Metabolomics A Study of Biochemical Processes
Kalyan Chakravarthy Mynampati
Sheela Reuben
Sanjay Swarup
8.1 Introduction
173(1)
8.2 Rhizosphere
174(2)
8.2.1 Composition and Biochemistry of the Rhizosphere
174(1)
8.2.1.1 Root Exudates
174(1)
8.2.1.2 Rhizobacteria
175(1)
8.2.1.3 Soil Fungi
175(1)
8.2.1.4 Soil Nematodes
175(1)
8.2.2 Aquatic versus Soil Rhizosphere
175(1)
8.3 Rhizosphere Metabolomics
176(7)
8.3.1 Analytical Techniques for Rhizosphere Metabolomics
176(1)
8.3.1.1 Chromatography Techniques
176(1)
8.3.1.2 MS Techniques
177(2)
8.3.1.3 Spectroscopy Techniques
179(1)
8.3.2 Metabolomics Data Handling and Analysis
180(3)
8.4 Applications of Rhizosphere Metabolomics
183(1)
8.4.1 Rhizoremediation
183(1)
8.4.2 Sustainable Agriculture
183(1)
8.5 Conclusion
184(3)
Acknowledgements
184(1)
References
184(3)
Chapter 9 Microbial Functionality and Diversity in Agroecosystems A Soil Quality Perspective
Felipe Bastida
Cesar Nicolas
Jose Luis Moreno
Teresa Hernandez
Carlos Garcia
9.1 Introduction
187(1)
9.2 Starting Point: Agriculture and Soil Sustainability
188(1)
9.3 Soil Quality, Microbial Activity and the New Field of Proteomics
189(2)
9.4 Applications of Organic Amendments in Semiarid Soils and Carbon Sequestration in Soil-Plant Systems
191(6)
9.4.1 Carbon Sequestration in Soil-Plant Systems
192(5)
9.5 Do Agricultural Practices Affect Soil Microbial Diversity and Activity?
197(5)
9.6 Indexes of Soil Quality in Agroecosystems
202(5)
9.7 Perspectives and Conclusions
207(9)
References
208(8)
Chapter 10 Survey in Plant Root Proteomics To Know the Unknown
Sophie Alvarez
Leslie M. Hicks
10.1 Introduction
216(1)
10.2 Protein Survey of Specific Root Structures
217(6)
10.2.1 Root Structure
217(2)
10.2.2 Root Architecture
219(1)
10.2.3 Lateral Root Initiation
220(1)
10.2.4 Plasma Membrane Root Proteins
220(1)
10.2.5 Cell Wall-Associated Root Proteins
221(1)
10.2.6 Secondary Structures and Root-to-Shoot Communication
222(1)
10.3 Protein Network Rearrangement during Symbiotic Associations
223(6)
10.3.1 Legume-Rhizobia Interactions
223(1)
10.3.1.1 Root-Rhizobial Recognition
223(1)
10.3.1.2 Nodulation
223(3)
10.3.1.3 Protein Metabolism in Root Nodules
226(1)
10.3.1.4 Symbiosome Biogenesis
227(1)
10.3.2 AM Symbiosis
227(1)
10.3.2.1 Appresoria Formation and Signal Transduction
227(1)
10.3.2.2 Nutrient Exchange in Periarbuscular Space
228(1)
10.3.3 Common Symbiotic Protein Induction
229(1)
10.4 Proteins Involved in Physiological Alterations under Unfavorable Conditions
229(13)
10.4.1 Pathogen-Root Interactions
229(2)
10.4.1.1 Fungi-Root Interactions
231(1)
10.4.1.2 Bacteria-Root Interactions
232(1)
10.4.1.3 Nematode-Root Interactions
233(1)
10.4.2 Water Stress and Temperature Changes
233(1)
10.4.2.1 Drought Tolerance of Roots
233(2)
10.4.2.2 Flooding Stress on Roots
235(1)
10.4.2.3 Low-Temperature Effects on Root Function
236(1)
10.4.2.4 Thermotolerance of Roots
236(1)
10.4.3 Soil Composition Changes
237(1)
10.4.3.1 Salinity Stress
237(1)
10.4.3.2 Nitrogen, Potassium, and Phosphorus Deprivation
238(1)
10.4.3.3 Glycine as a Nitrogen Supply
239(1)
10.4.4 Metal Contamination-Responsive Proteins
240(1)
10.4.4.1 Copper
240(1)
10.4.4.2 Cadmium
241(1)
10.4.4.3 Aluminum
242(1)
10.4.4.4 Arsenic
242(1)
10.5 Challenges and Prospects in Root Proteomics
242(16)
References
245(13)
Chapter 11 Applications of Agricultural and Medicinal Biotechnology in Functional Foods
Kandan Aravindaram
Ning-Sun Yang
11.1 Introduction
258(1)
11.2 Applications of Biotechnology to Food/Feed Crop Improvement
259(2)
11.2.1 Rice
259(1)
11.2.2 Wheat
259(1)
11.2.3 Cassava
260(1)
11.2.4 Potato
260(1)
11.2.5 Corn
260(1)
11.3 Functional Foods for Application to Human Health Care and/or Disease Prevention
261(4)
11.3.1 Vitamins
261(1)
11.3.1.1 Vitamin A and Other Carotenoids
262(1)
11.3.1.2 Vitamin E
263(1)
11.3.1.3 Vitamin C
263(1)
11.3.2 Minerals
263(1)
11.3.2.1 Iron
263(1)
11.3.2.2 Zinc
264(1)
11.3.2.3 Selenium
264(1)
11.4 Other Functional Food Products
265(1)
11.4.1 Probiotics
265(1)
11.4.2 Prebiotics
265(1)
11.4.3 Essential Fatty Acids
265(1)
11.4.4 Green Tea
266(1)
11.5 Omics Approaches for Functional Foods
266(3)
11.5.1 Genomics and Functional Food
267(1)
11.5.2 Proteomics and Functional Food
268(1)
11.5.3 Metabolomics and Functional Food
268(1)
11.6 Biotechnology against Food Allergies
269(1)
11.7 Conclusions
270(5)
References
270(5)
Chapter 12 Nutritional Genomics and Sustainable Agriculture
Maria Luisa Guillen
Mercedes Sotos-Prieto
Dolores Corella
12.1 Introduction
275(1)
12.2 Nutritional Genomics and Crops
276(6)
12.2.1 General Considerations and Concerns
277(1)
12.2.2 Increased Production of Macronutrients
277(2)
12.2.3 Increasing Production of Vitamins
279(1)
12.2.4 Increase Nutraceutical Compounds
280(1)
12.2.5 Reduction of Anti-Nutrients or Allergens
281(1)
12.2.6 Concluding Comments and Future Directions
281(1)
12.3 Nutritional Genomics and Animal Production
282(4)
12.3.1 Improving the Nutritive Value of Animal-Derived Foods
282(3)
12.3.2 Animal Models in Nutrigenomics
285(1)
12.4 Nutritional Genomics and Food Processing
286(7)
12.4.1 Genetic Process Markers
287(2)
12.4.2 Genomics and Food Safety
289(1)
12.4.2.1 Genomics and Toxicological Evaluation
289(1)
12.4.2.2 Genomics and Microbiological Evaluation
290(2)
12.4.3 Genomics and Quality Assurance
292(1)
12.5 Nutritional Genomics and Human Health
293(10)
12.5.1 Gene-Diet Interactions
294(2)
12.5.2 Nutrigenomics and Food Intolerance
296(1)
12.5.3 Nutrigenomics and Food Preferences
297(1)
References
297(6)
Chapter 13 Metabolomics Current View on Fruit Quality in Relation to Human Health
Ilian Badjakov
Violeta Kondakova
Atanas Atanassov
13.1 Introduction
303(1)
13.2 Metabolite Profiling
304(2)
13.3 Fruit Quality Relation with Human Health
306(4)
13.4 Fruit Phenolics and Human Health
310(11)
References
312(9)
Chapter 14 New Farm Management Strategy to Enhance Sustainable Rice Production in Japan and Indonesia
Masakazu Komatsuzaki
Faiz M. Syuaib
14.1 Introduction
321(1)
14.2 Rice Production and Their Sustainability in Japan
322(6)
14.2.1 Country Facts and Agricultural Practices at a Glance
322(1)
14.2.2 Rice Production and Sustainable Farming System Using Cover Crops
323(1)
14.2.2.1 Soil Residual N Scavenging
323(1)
14.2.2.2 Reducing or Eliminating Fertilizer Use
324(2)
14.2.2.3 Landscape Management
326(1)
14.2.3 Sustainable Rice Production Practices in Japan
326(2)
14.3 Rice Productions and Their Sustainability in Indonesia
328(8)
14.3.1 Country Facts and Agricultural Practices at a Glance
328(3)
14.3.2 Rice Production and Farming System in Indonesia
331(1)
14.3.3 Organic Rice Production and Sustainable Agriculture
332(2)
14.3.4 Organic Rice Production Practice in West Java, Indonesia
334(2)
14.4 Conclusions
336(5)
References
338(3)
Chapter 15 Advances in Genetics and Genomics for Sustainable Peanut Production
Baozhu Guo
Charles Chen
Ye Chu
C. Corley Holbrook
Peggy Ozias-Akins
H. Thomas Stalker
15.1 Introduction
341(1)
15.2 Germplasm Collection and Utilization
342(2)
15.3 Genetic Breeding and Cultivar Development
344(5)
15.3.1 Resistance to Root-Knot Nematodes
345(1)
15.3.2 Resistance to Soil-Borne Fungal Diseases
345(1)
15.3.3 Resistance to Foliar Diseases
346(1)
15.3.4 Resistance to TSWV
347(1)
15.3.5 Resistance to Aflatoxin Contamination and Drought Tolerance
347(2)
15.3.6 Improvement of Oil Quality
349(1)
15.4 Cytogenetics and Genome Composition
349(2)
15.5 Molecular Genetics and Biotechnology
351(5)
15.5.1 Genetic Markers
351(2)
15.5.2 Other Markers
353(1)
15.5.3 Genetic Linkage Map
353(1)
15.5.4 MAS for Nematode-Resistant Peanuts
354(1)
15.5.5 MAS for High-Oleic Oil Peanuts
355(1)
15.6 TILLING and Transformation
356(1)
15.7 Peanut Expressed Sequence Tags (ESTs) and Transcriptome Analysis
357(1)
15.8 Conclusion
358(11)
References
359(10)
Chapter 16 The Relevance of Compositional and Metabolite Variability in Safety Assessments of Novel Crops
George G. Harrigan
Angela Hendrickson Culler
William P. Ridley
Kevin C. Glenn
16.1 Introduction
369(1)
16.2 Philosophy of Compositional Analyses in Comparative Safety Assessments of New Crops
370(3)
16.3 Overview of Compositional Assessments of Equivalence and Natural Variability
373(4)
16.4 Metabolomics and Metabolite Variation in Crops
377(1)
16.5 Implications of Variation for Regulatory Assessments for Nutritionally Enhanced Crops
378(1)
16.6 Concluding Remarks
379(4)
References
380(3)
Chapter 17 Gene-Expression Analysis of Cell-Cycle Regulation Genes in Virus-Infected Rice Leaves
Shoshi Kikuchi
Kouji Satoh
17.1 Introduction
383(1)
17.2 Current Biology of the Eight Rice Viruses Used in This Study
384(10)
17.2.1 Rice Black-Streaked Dwarf Virus
384(3)
17.2.2 Rice Dwarf Virus
387(1)
17.2.3 Rice Grassy Stunt Virus
388(1)
17.2.4 Rice Ragged Stunt Virus
389(1)
17.2.5 Rice Stripe Virus
390(1)
17.2.6 Rice Transitory Yellowing Virus
391(1)
17.2.7 Rice Tungro Disease
391(1)
17.2.7.1 Rice Tungro Bacilliform Virus
391(1)
17.2.7.2 Rice Tungro Spherical Virus
392(1)
17.2.7.3 Interaction of RTBV and RTSV
392(2)
17.3 Host-Virus Interactions
394(1)
17.4 Transcriptome Analysis of Virus-Infected Host Plants
395(2)
17.5 Expression Profiles of Cell-Cycle-Related Genes in Rice Leaves Following Virus Infection or Drought Stress
397(17)
17.5.1 Cyclins
397(9)
17.5.2 Cyclin-Dependent Kinases
406(1)
17.5.3 CDK Inhibitors
407(3)
17.5.4 E2F/DP Transcription Factor and Rb Homologs
410(4)
17.5.5 Cell Division Cycle Kinase Subunit 1 and Wee
414(1)
17.6 Conclusion
414(12)
References
414(12)
Chapter 18 Transcriptomics, Proteomics and Metabolomics Integration of Latest Technologies for Improving Future Wheat Productivity
Michael G. Francki
Allison C. Crawford
Klaus Oldach
18.1 Introduction
426(1)
18.2 Transcriptomics
427(6)
18.2.1 Transcriptomics in Wheat Development
428(1)
18.2.1.1 Transcriptomics in Transition Phase from Vegetative to Reproductive Growth
428(1)
18.2.1.2 Transcriptomics in Developing Grain
429(1)
18.2.2 Transcriptomics of Wheat under Biotic Stress
430(1)
18.2.3 Transcriptomics of Wheat under Abiotic Stress
431(1)
18.2.3.1 Transcriptomics for Drought Stress Responses
432(1)
18.2.3.2 Transcriptomics for Stress Responses to Aluminium and Salt
432(1)
18.2.4 Future Directions in Wheat Transcriptomics
433(1)
18.3 Proteomics
433(7)
18.3.1 Proteomics for Wheat Grain Quality
434(1)
18.3.1.1 Proteome of the Developing Wheat Grain
434(1)
18.3.1.2 Proteomics for End-Products
435(1)
18.3.1.3 Protein Analysis of Grain under Abiotic Stress
436(1)
18.3.1.4 Proteomics of Grain for Health Benefits
437(1)
18.3.2 Proteomics for Agronomic Performance
438(1)
18.3.2.1 Developmental Leaf Proteome
438(1)
18.3.2.2 Proteomic Analysis under Abiotic Stress
438(1)
18.3.2.3 Proteomics Analysis under Biotic Stress
439(1)
18.3.3 Future Directions in Wheat Proteomics
440(1)
18.4 Metabolomics
440(5)
18.4.1 Metabolomics for Wheat Grain Quality
441(1)
18.4.1.1 Genotypic and Environmental Factors
442(1)
18.4.1.2 End-Product Assessment and Human Health
442(1)
18.4.2 Wheat Metabolome
443(1)
18.4.2.1 Abiotic Interactions
444(1)
18.4.2.2 Biotic Interactions
444(1)
18.4.3 Future Directions in Wheat Metabolomics
445(1)
18.5 Towards Building Systems Biology Networks in Wheat
445(9)
References
446(8)
Chapter 19 Impact of Climatic Changes on Crop Agriculture OMICS for Sustainability and Next-Generation Crops
Sajad Majeed Zargar
Muslima Nazir
Kyoungwon Cho
Dea-Wook Kim
Oliver Andrzej
Hodgson Jones
Abhijit Sarkar
Shashi Bhushan Agrawal
Junko Shibato
Akihiro Kubo
Nam-Soo Jwa
Ganesh Kumar Agrawal
Randeep Rakwal
19.1 Introduction
454(1)
19.2 Sustainable Agriculture
455(2)
19.3 Crop Agriculture
457(1)
19.3.1 Where We Were: A Brief History of the Green Revolution
457(1)
19.3.2 Where We Are Today: The `Second' Green Revolution
457(1)
19.4 Climate Change and Its Impact on Crops
458(2)
19.4.1 Climate Change
458(1)
19.4.2 Impact of Climate Change
458(2)
19.5 Crop Improvement: An Urgent Need
460(5)
19.5.1 Journey from Classical Breeding to Molecular Breeding
460(2)
19.5.2 Genome Revolution and OMICS
462(3)
19.6 Development of Molecular- and Biomarkers in Crops against Major Components of Global Climate Change
465(6)
19.6.1 Study of Ozone Effect
465(1)
19.6.1.1 Rice
466(1)
19.6.1.2 Wheat
466(1)
19.6.1.3 Maize
467(1)
19.6.1.4 Bean
467(1)
19.6.2 Study of Carbon Dioxide Effect
467(1)
19.6.2.1 Rice
467(1)
19.6.2.2 Wheat
468(1)
19.6.3 Study of UV-B Effect
468(1)
19.6.3.1 Maize
468(1)
19.6.3.2 Soya Bean
468(1)
19.6.4 Rice Blast and Host Interactions Using Genomics and Metabolomics Profiling
469(2)
19.7 Exploitation of Natural Genetic Resources Using Established Molecular- and Biomarkers
471(1)
19.8 Next-Generation Crops
471(2)
19.9 Concluding Remarks
473(6)
References
473(6)
Chapter 20 Designing Oilseeds for Biomaterial Production
Thomas A. McKeon
20.1 Introduction
479(1)
20.2 Fatty Acids Present in Seed Oils
480(1)
20.3 Altering Fatty Acid Composition of an Oil
481(1)
20.4 Fatty Acid and Oil Biosynthesis
481(1)
20.5 Oil Biosynthesis
482(1)
20.6 Biomaterials Derived from Commodity Seed Oils
483(1)
20.7 Other Fatty Acids Used for Producing Biomaterials
484(1)
20.8 Seed Oils as Sources for Producing Biomaterials
484(5)
20.8.1 Monounsaturated Fatty Acid Biosynthesis
484(1)
20.8.1.1 Laurate Oils
485(1)
20.8.1.2 Castor Oil
485(2)
20.8.1.3 Rapeseed Oil
487(1)
20.8.1.4 Cuphea Oil
488(1)
20.8.1.5 Jojoba Wax
488(1)
20.8.1.6 Tung Oil
489(1)
20.9 Technical and Social Issues of Genetic Engineering
489(2)
20.10 Conclusion
491(4)
References
491(4)
Chapter 21 Bioenergy from Agricultural Biowaste Key Technologies and Concepts
Suman Khowala
Swagata Pal
21.1 Introduction
495(1)
21.2 Rationale of Converting Biomass into Bioenergy (Bioethanol)
496(1)
21.3 Sources of Biomass/Biowaste
496(1)
21.3.1 Crop Residue and Farm Wastes
496(1)
21.3.2 Agricultural Industrial Wastes
497(1)
21.3.3 Forest Wastes
497(1)
21.3.4 Logging Residues
497(1)
21.3.5 Animal Wastes
497(1)
21.4 Management of Biomass/Biowaste
497(1)
21.5 Composition of Biomass
498(1)
21.6 Biomass to Bioethanol: Ethanol Production Technologies
499(5)
21.6.1 Pretreatment of Lignocellulosic Materials
499(1)
21.6.1.1 Physical Pretreatment
499(1)
21.6.1.2 Chemical Pretreatments
499(2)
21.6.1.3 Physico-Chemical Pretreatment
501(1)
21.6.1.4 Biological Pretreatment
502(1)
21.6.2 Hydrolysis of Cellulose and Hemicellulose into Monomeric Fermentable Sugar
502(1)
21.6.2.1 Methods of Enzymes Production
502(1)
21.6.2.2 Enzyme Cocktails for Saccharification
503(1)
21.6.2.3 Different Hydrolysis Configurations and Fermentation for Ethanol Production
504(1)
21.7 Concluding Remarks
504(5)
References
505(4)
Index 509
Noureddine Benkeblia, Department of Life Sciences, University of the West Indies Mona Campus, Kingston 7, Jamaica