Atnaujinkite slapukų nuostatas

Sustainable Engineering: Drivers, Metrics, Tools, and Applications [Kietas viršelis]

(ENGEO Incorporated, CA), (University of Vigo, Spain), (University of Illinois - Chicago, IL)
  • Formatas: Hardback, 544 pages, aukštis x plotis x storis: 259x183x31 mm, weight: 1315 g
  • Išleidimo metai: 14-Jun-2019
  • Leidėjas: John Wiley & Sons Inc
  • ISBN-10: 1119493935
  • ISBN-13: 9781119493938
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 544 pages, aukštis x plotis x storis: 259x183x31 mm, weight: 1315 g
  • Išleidimo metai: 14-Jun-2019
  • Leidėjas: John Wiley & Sons Inc
  • ISBN-10: 1119493935
  • ISBN-13: 9781119493938
Kitos knygos pagal šią temą:

Comprehensively covers the definition, methodology, and current applications of the principles of sustainability and resiliency in every engineering discipline

This book contains detailed information about sustainability and resiliency principles and applications in engineering practice, and provides information on how to use scientific tools for sustainability assessment that help engineers select the best alternative for each project or activity. Logically organized around the three pillars of sustainability—environment, economy, and society—it is a primary resource for students and professionals alike.

Sustainable Engineering: Drivers, Metrics, Tools, and Applications offers numerous ways to help engineers contribute towards global sustainable development while solving some of the grand challenges the world is facing today. The first part of the book covers the environmental, economic, and social impacts associated with project/product development as well as society as a whole. This is followed by a section devoted to sustainability metrics and assessment tools, which includes material flow analysis and material budget, carbon footprint analysis, life cycle assessment, environmental health risk assessment, and more. Next comes an in-depth examination of sustainable engineering practices, including sustainable energy engineering, sustainable waste management, and green and sustainable buildings. The book concludes with a look at how sustainable engineering may be applied to different engineering (i.e. environmental, chemical, civil, materials, infrastructure) projects.

Some of the key features of this book include the following: 

  • Provides a complete and sensible understanding of the important concepts of sustainability, resiliency, and sustainable engineering
  • Offers detailed explanations of sustainable engineering practices in waste management and remediation of contaminated sites, civil construction and infrastructure, and climate geoengineering
  • Presents a set of case studies across different engineering disciplines such as bio/chemical, environmental, materials, construction, and infrastructure engineering that demonstrate the practical applicability of sustainability assessment tools to diverse projects
  • Includes questions at the end of each chapter as well as a solutions manual for academic adopters 

The depth of coverage found in Sustainable Engineering: Drivers, Metrics, Tools, and Applications makes it an ideal textbook for graduate students across all engineering disciplines and a handy resource for active professionals.

Preface xvii
Section I Drivers, Environmental, Economic and Social Impacts, and Resiliency 1(130)
1 Emerging Challenges, Sustainability, and Sustainable Engineering
3(28)
1.1 Introduction
3(1)
1.2 Emerging Challenges
3(14)
1.2.1 Increased Consumption and Depletion of Natural Resources
3(3)
1.2.1.1 Easter Island Example
4(1)
1.2.1.2 Metallic Ores Consumption Example
5(1)
1.2.2 Growing Environmental Pollution
6(1)
1.2.3 Increasing Population
7(1)
1.2.4 Increasing Waste Generation
8(2)
1.2.5 Increasing Greenhouse Gas Emissions
10(3)
1.2.6 Decline of Ecosystems
13(1)
1.2.7 Loss of Biodiversity
13(1)
1.2.8 Social Injustice
14(2)
1.2.9 Urban Sprawl
16(1)
1.3 The Master Equation or IPAT Equation
17(1)
1.4 What Is Sustainability?
17(4)
1.5 What Is Sustainable Engineering?
21(4)
1.6 Summary
25(1)
1.7 Questions
26(1)
References
26(5)
2 Environmental Concerns
31(38)
2.1 Introduction
31(1)
2.2 Global Warming and Climate Change
32(8)
2.3 Desertification
40(1)
2.4 Deforestation
40(1)
2.5 Loss of Habitat and Biodiversity
41(2)
2.6 Ozone Layer Depletion
43(1)
2.7 Air Pollution
44(2)
2.8 Smog
46(1)
2.9 Acid Rain
47(1)
2.10 Water Usage and Pollution
48(3)
2.11 Eutrophication
51(1)
2.12 Salinity
52(1)
2.13 Wastes and Disposal
52(7)
2.14 Land Contamination
59(1)
2.15 Visibility
60(1)
2.16 Odors
60(1)
2.17 Aesthetic Degradation
61(1)
2.18 Land Use Patterns
61(1)
2.19 Thermal Pollution
61(1)
2.20 Noise Pollution
62(1)
2.21 Summary
62(1)
2.22 Questions
63(1)
References
64(5)
3 Social, Economic, and Legal Issues
69(16)
3.1 Introduction
69(1)
3.2 Social Issues
69(8)
3.2.1 Society
69(1)
3.2.2 Developed and Developing Societies
70(1)
3.2.3 Social Sustainability Concept
71(1)
3.2.4 Social Indicators
72(1)
3.2.5 Social Impact Assessment
73(4)
3.2.6 Social Sustainability Implementation
77(1)
3.3 Economic Issues
77(3)
3.3.1 Economic Assessment Framework
78(1)
3.3.2 Life Cycle Costing
79(1)
3.3.3 True-cost Accounting
79(1)
3.4 Legal Issues
80(1)
3.5 Summary
81(1)
3.6 Questions
81(1)
References
82(3)
4 Availability and Depletion of Natural Resources
85(18)
4.1 Introduction
85(1)
4.2 Types and Availability of Resources
85(9)
4.2.1 Fossil Fuels
85(2)
4.2.2 Radioactive Fuels
87(1)
4.2.3 Mineral Resources
88(1)
4.2.4 Water Resources
89(2)
4.2.5 Other Elemental Cycles
91(3)
4.3 Resource Depletion
94(5)
4.3.1 Causes of Resource Depletion
95(1)
4.3.2 Effects of Resource Depletion
95(3)
4.3.3 Overshooting
98(1)
4.3.4 Urban Metabolism
98(1)
4.4 Summary
99(1)
4.5 Questions
100(1)
References
101(2)
5 Disaster Resiliency
103(28)
5.1 Introduction
103(1)
5.2 Climate Change and Extreme Events
104(1)
5.3 Impacts of Extreme Events
105(1)
5.3.1 The 2012 Hurricane Sandy in New York City
105(1)
5.3.2 The 2016 Chile's Wildfires by Drought and Record Heat
106(1)
5.3.3 The 2017 Worst South Asian Monsoon Floods
106(1)
5.4 What Is Resiliency?
106(3)
5.5 Initiatives and Policies on Resiliency
109(3)
5.6 Resiliency Framework
112(3)
5.7 Resilient Infrastructure
115(2)
5.8 Resilient Infrastructure Examples
117(9)
5.8.1 San Francisco Firehouse Resilient Design
117(1)
5.8.2 San Francisco Resilient CSD Design
117(2)
5.8.3 Resilient Environmental Remediation
119(7)
5.9 Challenges
126(1)
5.10 Summary
126(1)
5.11 Questions
127(1)
References
127(4)
Section II Sustainability Metrics and Assessment Tools 131(112)
6 Sustainability Indicators, Metrics, and Assessment Tools
133(10)
6.1 Introduction
133(1)
6.2 Sustainability Indicators
133(3)
6.3 Sustainability Metrics
136(1)
6.4 Sustainability Assessment Tools
137(2)
6.5 Summary
139(1)
6.6 Questions
139(1)
References
140(3)
7 Material Flow Analysis and Material Budget
143(16)
7.1 Introduction
143(1)
7.2 Budget of Natural Resources
143(2)
7.3 Constructing a Budget
145(1)
7.4 Material Flow Analysis
145(3)
7.5 Material Flow Analysis: Wastes
148(3)
7.6 National Material Account
151(4)
7.7 Summary
155(1)
7.8 Questions
156(1)
References
156(3)
8 Carbon Footprint Analysis
159(16)
8.1 Introduction
159(1)
8.2 Global Warming Potential and Carbon Footprint
159(2)
8.3 Measuring Carbon Footprint
161(3)
8.3.1 Define the Scope of Your Inventory
161(1)
8.3.2 Measure Emissions and Establish a Baseline
161(3)
8.3.3 Develop Targets and Strategies to Reduce Emissions
164(1)
8.3.4 Off-set Unavoidable Emissions
164(1)
8.3.5 Independent Verification
164(1)
8.4 Standards for Calculating the Carbon Footprint
164(1)
8.5 GHG Inventory: Developments in the United States
165(1)
8.6 USEPA: Greenhouse Gas Reporting Program
166(1)
8.7 Tools for GHG Inventory
166(1)
8.8 UIC Carbon Footprint Case Study
167(4)
8.9 Programs to Mitigate GHG Emissions
171(1)
8.10 Summary
172(1)
8.11 Questions
172(1)
References
172(3)
9 Life Cycle Assessment
175(18)
9.1 Introduction
175(1)
9.2 Life Cycle Assessment
176(3)
9.2.1 Definition and Objective
176(1)
9.2.2 Procedure
176(2)
9.2.3 History
178(1)
9.3 LCA Methodology
179(10)
9.3.1 Goal and Scope Definition
180(1)
9.3.2 Life Cycle Inventory (LCI)
181(3)
9.3.3 Life Cycle Impact Assessment (LCIA)
184(4)
9.3.4 Interpretation
188(1)
9.4 LCA Tools and Applications
189(1)
9.5 Summary
190(1)
9.6 Questions
191(1)
References
191(2)
10 Streamlined Life Cycle Assessment
193(16)
10.1 Introduction
193(1)
10.2 Streamlined LCA (SLCA)
194(3)
10.3 Expanded SLCA
197(3)
10.4 Simple Example of SLCA
200(2)
10.5 Applications of SLCA
202(4)
10.6 Summary
206(1)
10.7 Questions
206(1)
References
207(2)
11 Economic Input-Output Life Cycle Assessment
209(14)
11.1 Introduction
209(1)
11.2 EIO Model
209(2)
11.3 EIO-LCA
211(2)
11.4 EIO-LCA Model Results
213(1)
11.4.1 Interpretation of Results
213(1)
11.4.2 Uncertainty
213(1)
11.4.3 Other Issues and Considerations
214(1)
11.5 Example of EIO-LCA Model
214(2)
11.6 Conventional LCA versus EIO-LCA
216(2)
11.7 EIO versus Physical Input-Output (PIO) Analysis
218(3)
11.8 Summary
221(1)
11.9 Questions
221(1)
References
222(1)
12 Environmental Health Risk Assessment
223(10)
12.1 Introduction
223(1)
12.2 Emergence of the Risk Era
223(1)
12.3 Risk Assessment and Management
224(6)
12.3.1 Hazard Identification
225(1)
12.3.2 Dose-Response Assessment
225(2)
12.3.3 Exposure Assessment
227(1)
12.3.4 Risk Characterization
228(2)
12.4 Ecological Risk Assessment
230(1)
12.5 Summary
231(1)
12.6 Questions
232(1)
References
232(1)
13 Other Emerging Assessment Tools
233(10)
13.1 Introduction
233(1)
13.2 Environmental Assessment Tools/Indicators
233(2)
13.3 Economic Assessment Tools
235(2)
13.3.1 Life-Cycle Costing
236(1)
13.3.2 Cost-Benefit Analysis
237(1)
13.4 Ecosystem Services Valuation Tools
237(1)
13.5 Environmental Justice Tools
238(1)
13.6 Integrated Sustainability Assessment Tools
239(2)
13.7 Summary
241(1)
13.8 Questions
241(1)
References
242(1)
Section III Sustainable Engineering Practices 243(108)
14 Sustainable Energy Engineering
245(24)
14.1 Introduction
245(1)
14.2 Environmental Impacts of Energy Generation
246(5)
14.2.1 Air Emissions
246(4)
14.2.2 Solid Waste Generation
250(1)
14.2.3 Water Resource Use
250(1)
14.2.4 Land Resource Use
250(1)
14.3 Nuclear Energy
251(1)
14.4 Strategies for Clean Energy
252(2)
14.5 Renewable Energy
254(11)
14.5.1 Solar Energy
254(1)
14.5.2 Wind Energy
255(2)
14.5.3 Water Energy
257(2)
14.5.4 Geothermal Energy
259(3)
14.5.5 Biomass Energy
262(3)
14.6 Summary
265(1)
14.7 Questions
266(1)
References
266(3)
15 Sustainable Waste Management
269(18)
15.1 Introduction
269(1)
15.2 Types of Waste
269(1)
15.2.1 Nonhazardous Waste
270(1)
15.2.2 Hazardous Waste
270(1)
15.3 Effects and Impacts of Waste
270(1)
15.4 Waste Management
271(7)
15.4.1 Pollution Prevention
272(1)
15.4.2 Green Chemistry
272(2)
15.4.3 Waste Minimization
274(1)
15.4.4 Reuse/Recycling
274(2)
15.4.5 Energy Recovery
276(1)
15.4.6 Landfilling
276(2)
15.5 Integrated Waste Management
278(3)
15.6 Sustainable Waste Management
281(1)
15.7 Circular Economy
282(1)
15.8 Summary
283(1)
15.9 Questions
283(1)
References
284(3)
16 Green and Sustainable Buildings
287(12)
16.1 Introduction
287(1)
16.2 Green Building History
288(1)
16.3 Why Build Green?
288(1)
16.4 Green Building Concepts
289(1)
16.5 Components of Green Building
290(3)
16.6 Green Building Rating - LEED
293(4)
16.7 Summary
297(1)
16.8 Questions
297(1)
References
298(1)
17 Sustainable Civil Infrastructure
299(16)
17.1 Introduction
299(1)
17.2 Principles of Sustainable Infrastructure
300(1)
17.3 Civil Infrastructure
300(2)
17.4 Envision™: Sustainability Rating of Civil Infrastructure
302(3)
17.5 Sustainable Infrastructure Practices: Example of Water Infrastructure
305(8)
17.5.1 Green Roofs
306(1)
17.5.2 Permeable Pavements
306(1)
17.5.3 Rainwater Harvesting
307(2)
17.5.4 Rain Gardens and Planter Boxes
309(1)
17.5.5 Bioswales
309(1)
17.5.6 Constructed Wetlands and Tree Canopies
309(4)
17.6 Summary
313(1)
17.7 Questions
313(1)
References
314(1)
18 Sustainable Remediation of Contaminated Sites
315(18)
18.1 Introduction
315(2)
18.2 Contaminated Site Remediation Approach
317(1)
18.3 Green and Sustainable Remediation Technologies
318(5)
18.4 Sustainable Remediation Framework
323(3)
18.5 Sustainable Remediation Indicators, Metrics, and Tools
326(2)
18.6 Case Studies
328(1)
18.7 Challenges and Opportunities
329(1)
18.8 Summary
330(1)
18.9 Questions
331(1)
References
332(1)
19 Climate Geoengineering
333(18)
19.1 Introduction
333(3)
19.2 Climate Geoengineering
336(1)
19.3 Carbon Dioxide Removal (CDR) Methods
336(4)
19.3.1 Subsurface Sequestration
336(2)
19.3.2 Surface Sequestration
338(1)
19.3.3 Marine Organism Sequestration
338(1)
19.3.4 Direct Engineered Capture
339(1)
19.4 Solar Radiation Management (SRM) Methods
340(4)
19.4.1 Sulfur Injection
342(1)
19.4.2 Reflectors and Mirrors
343(1)
19.5 Applicability of CDR and SRM
344(1)
19.6 Climate Geoengineering - A Theoretical Framework
345(1)
19.7 Risks and Challenges
345(2)
19.8 Summary
347(1)
19.9 Questions
348(1)
References
348(3)
Section IV Sustainable Engineering Applications 351(162)
20 Environmental and Chemical Engineering Projects
353(66)
20.1 Introduction
353(1)
20.2 Food Scrap Landfilling Versus Composting
353(15)
20.2.1 Background
353(2)
20.2.2 Methodology
355(3)
20.2.2.1 Goal and Scope
355(1)
20.2.2.2 Study Area
355(1)
20.2.2.3 Technical Design
355(3)
20.2.3 Environmental Sustainability
358(1)
20.2.4 Life Cycle Assessment
359(1)
20.2.5 Economic Sustainability
359(6)
20.2.6 Social Sustainability
365(1)
20.2.7 ENVISION™
365(3)
20.2.8 Conclusions
368(1)
20.3 Adsorbent for the Removal of Arsenic from Groundwater
368(13)
20.3.1 Background
368(1)
20.3.2 Methodology
369(3)
20.3.2.1 Goal and Scope
369(1)
20.3.2.2 Site Location
370(1)
20.3.2.3 Technical Design
370(2)
20.3.3 Environmental Sustainability
372(1)
20.3.4 Economic Sustainability
373(2)
20.3.5 Social Sustainability
375(1)
20.3.6 Streamline Life Cycle Assessment (SLCA)
375(3)
20.3.7 Envision
378(2)
20.3.8 Conclusions
380(1)
20.4 Conventional Versus Biocover Landfill Cover System
381(13)
20.4.1 Background
382(1)
20.4.2 Methodology
383(3)
20.4.2.1 Goal and Scope
383(1)
20.4.2.2 Landfill Location
383(1)
20.4.2.3 Technical Design of Landfill Covers
383(3)
20.4.3 Environmental Sustainability
386(5)
20.4.4 Economic Sustainability
391(2)
20.4.5 Social Sustainability
393(1)
20.4.6 Conclusions
394(1)
20.5 Algae Biomass Deep Well Reactors Versus Open Pond Systems
394(11)
20.5.1 Background
394(2)
20.5.2 Methodology
396(4)
20.5.2.1 Goal and Scope
396(1)
20.5.2.2 Site Location
396(1)
20.5.2.3 Technical Design
396(1)
20.5.2.4 Sustainability Assessment
396(4)
20.5.3 Environmental Sustainability
400(2)
20.5.4 Economic Sustainability
402(1)
20.5.5 Social Sustainability
402(3)
20.5.6 Conclusions
405(1)
20.6 Remedial Alternatives for PCB- and Pesticide-Contaminated Sediment
405(11)
20.6.1 Background
405(1)
20.6.2 Methodology
406(4)
20.6.2.1 Goal and Scope
406(1)
20.6.2.2 Study Area
406(1)
20.6.2.3 Technical Design
406(3)
20.6.2.4 Sustainability Assessment Methodology
409(1)
20.6.3 Environmental Sustainability
410(1)
20.6.4 Economic Sustainability
411(1)
20.6.5 Social Sustainability
412(2)
20.6.6 Overall Sustainability
414(2)
20.6.7 Conclusions
416(1)
20.7 Summary
416(1)
References
417(2)
21 Civil and Materials Engineering Sustainability Projects
419(42)
21.1 Introduction
419(1)
21.2 Sustainable Translucent Composite Panels
419(11)
21.2.1 Background
419(1)
21.2.2 Methodology
420(3)
21.2.2.1 Goal and Scope
420(1)
21.2.2.2 Technical Design
420(3)
21.2.3 Environmental Sustainability
423(1)
21.2.4 Economic Sustainability
423(4)
21.2.5 Social Sustainability
427(3)
21.2.6 Conclusions
430(1)
21.3 Sustainability Assessment of Concrete Mixtures for Pavements and Bridge Decks
430(19)
21.3.1 Background
430(2)
21.3.2 Methodology
432(7)
21.3.2.1 Goal and Scope
432(1)
21.3.2.2 Materials
432(1)
21.3.2.3 Technical Design
433(3)
21.3.2.4 Sustainability Assessment
436(3)
21.3.3 Environmental Sustainability
439(6)
21.3.4 Economic Sustainability
445(2)
21.3.5 Social Sustainability
447(1)
21.3.6 Conclusions
448(1)
21.4 Sustainability Assessment of Parking Lot Design Alternatives
449(9)
21.4.1 Background
449(1)
21.4.2 Methodology
450(2)
21.4.2.1 Goal and Scope
450(1)
21.4.2.2 Study Area
450(1)
21.4.2.3 Technical Design
450(1)
21.4.2.4 Sustainability Assessment
451(1)
21.4.3 Environmental Sustainability
452(3)
21.4.4 Economic Sustainability
455(1)
21.4.5 Social Sustainability
456(1)
21.4.6 Overall Sustainability
457(1)
21.4.7 Conclusions
457(1)
21.5 Summary
458(1)
References
458(3)
22 Infrastructure Engineering Sustainability Projects
461(52)
22.1 Introduction
461(1)
22.2 Comparison of Two Building Designs for an Electric Bus Substation
461(11)
22.2.1 Background
461(1)
22.2.2 Methodology
462(1)
22.2.2.1 Goal and Scope
462(1)
22.2.2.2 Subsurface Soil Profile and Design Requirements
462(1)
22.2.2.3 Technical Design
462(1)
22.2.2.4 Sustainability Assessment
463(1)
22.2.3 Environmental Sustainability
463(4)
22.2.4 Economic Sustainability
467(2)
22.2.5 Social Sustainability
469(3)
22.2.6 Conclusion
472(1)
22.3 Prefabricated Cantilever Retaining Wall versus Conventional Cantilever Cast-in Place Retaining Wall
472(11)
22.3.1 Background
473(1)
22.3.2 Methodology
473(4)
22.3.2.1 Goal and Scope
473(1)
22.3.2.2 Study Area
473(1)
22.3.2.3 Technical Design
473(3)
22.3.2.4 Sustainability Assessment
476(1)
22.3.3 Environmental Sustainability
477(1)
22.3.4 Economic Sustainability
477(1)
22.3.5 Social Sustainability
478(5)
22.3.6 Conclusion
483(1)
22.4 Sustainability Assessment of Two Alternate Water Pipelines
483(8)
22.4.1 Background
483(1)
22.4.2 Methodology
484(2)
22.4.2.1 Goal and Scope
484(1)
22.4.2.2 Site Background
484(1)
22.4.2.3 Technical Design
484(1)
22.4.2.4 Sustainability Assessment
484(2)
22.4.3 Environmental Sustainability
486(1)
22.4.4 Economic Sustainability
487(1)
22.4.5 Social Sustainability
488(1)
22.4.6 Conclusion
489(2)
22.5 Sustainable Rural Electrification
491(8)
22.5.1 Background
491(1)
22.5.2 Methodology
491(2)
22.5.2.1 Goal and scope
491(1)
22.5.2.2 Study Area
491(1)
22.5.2.3 Technical Design
491(1)
22.5.2.4 Sustainability Assessment
492(1)
22.5.3 Environmental Sustainability
493(1)
22.5.4 Economic Sustainability
493(4)
22.5.4.1 Solar PV Power Generation System Proposal (CAPEX Costs)
493(4)
22.5.4.2 Diesel Power Generation System Proposal (OPEX and CAPEX Costs)
497(1)
22.5.5 Social Sustainability
497(1)
22.5.6 Conclusion
498(1)
22.6 Sustainability Assessment of Shear Wall Retrofitting Techniques
499(11)
22.6.1 Background
499(1)
22.6.2 Methodology
500(3)
22.6.2.1 Goal and Scope
500(1)
22.6.2.2 Technical Design
501(1)
22.6.2.3 Sustainability Assessment
502(1)
22.6.3 Environmental Sustainability
503(4)
22.6.4 Economic Sustainability SOS
22.6.5 Social Sustainability
507(1)
22.6.6 Overall Sustainability
507(1)
22.6.7 Conclusion
508(2)
22.7 Summary
510(1)
References
510(3)
Index 513
KRISHNA R. REDDY, PHD, is a Professor of Civil and Environmental Engineering in the Department of Civil and Materials Engineering at the University of Illinois at Chicago, and the Director of the Sustainable Engineering Research Laboratory and the Geotechnical and Geoenvironmental Engineering Laboratory.

CLAUDIO CAMESELLE, PHD, is an Associate Professor at the University of Vigo (Spain) where he coordinates the master programs in industrial pollution and environmental mangement.

JEFFREY A. ADAMS, PHD, is a Principal with San Ramon, California-based ENGEO Incorporated. He is a licensed Professional Engineer in the State of California and a Certified Environmental Manager in the State of Nevada.