Atnaujinkite slapukų nuostatas

El. knyga: Symmetry for Elliptic PDEs

Edited by , Edited by
  • Formatas: 137 pages
  • Serija: Contemporary Mathematics
  • Išleidimo metai: 11-Jan-2011
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9780821882078
Kitos knygos pagal šią temą:
  • Formatas: 137 pages
  • Serija: Contemporary Mathematics
  • Išleidimo metai: 11-Jan-2011
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9780821882078
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This volume contains contributions from the INdAM School on Symmetry for Elliptic PDEs, which was held May 25-29, 2009, in Rome, Italy. The school marked ""30 years after a conjecture of De Giorgi, and related problems"" and provided an opportunity for experts to discuss the state of the art and open questions on the subject. Motivated by the classical rigidity properties of the minimal surfaces, De Giorgi proposed the study of the one-dimensional symmetry of the monotone solutions of a semilinear, elliptic partial differential equation. Impressive advances have recently been made in this field, though many problems still remain open. Several generalizations to more complicated operators have attracted the attention of pure and applied mathematicians, both for their important theoretical problems and for their relation, among others, with the gradient theory of phase transitions and the dynamical systems.|This volume contains contributions from the INdAM School on Symmetry for Elliptic PDEs, which was held May 25-29, 2009, in Rome, Italy. The school marked ""30 years after a conjecture of De Giorgi, and related problems"" and provided an opportunity for experts to discuss the state of the art and open questions on the subject. Motivated by the classical rigidity properties of the minimal surfaces, De Giorgi proposed the study of the one-dimensional symmetry of the monotone solutions of a semilinear, elliptic partial differential equation. Impressive advances have recently been made in this field, though many problems still remain open. Several generalizations to more complicated operators have attracted the attention of pure and applied mathematicians, both for their important theoretical problems and for their relation, among others, with the gradient theory of phase transitions and the dynamical systems.
Preface vii
Speakers of the INdAM School ix
One-dimensional symmetry for solutions of Allen Cahn fully nonlinear equations
1(16)
F. Demengel
I. Birindelli
Maximum Principles and symmetry results in sub-Riemannian settings
17(18)
E. Lanconelli
Symetrie: si, mais seulement si?
35(8)
L. Dupaigne
Minimal surfaces and minimizers of the Ginzburg-Landau energy
43(16)
O. Savin
Green's Function Estimates for Some Linear and Nonlinear Elliptic Problems
59(12)
I. E. Verbitsky
Monotonicity of the solutions of quasilinear elliptic equations in the half-plane with a changing sign nonlinearity
71(10)
L. Montoro
B. Sciunzi
Some inequalities associated with semilinear elliptic equations with variable coefficients and applications
81(24)
F. Ferrari
A Liouville theorem for non local elliptic equations
105(10)
L. Dupaigne
Y. Sire
On a conjecture by De Giorgi in dimensions 9 and higher
115
M. Del Pino
M. Kowalczyk
J. Wei