Atnaujinkite slapukų nuostatas

El. knyga: Symplectic Geometry And Mirror Symmetry - Proceedings Of The 4th Kias Annual International Conference

Edited by (Univ Of Wisconsin-madison, Usa & Korea Inst For Adv Study, South Korea), Edited by (Hokkaido Univ, Japan), Edited by (Massachusetts Inst Of Tech, Usa), Edited by (Kyoto Univ, Japan)
  • Formatas: 508 pages
  • Išleidimo metai: 19-Nov-2001
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789814490405
Kitos knygos pagal šią temą:
  • Formatas: 508 pages
  • Išleidimo metai: 19-Nov-2001
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789814490405
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

In 1993, M Kontsevich proposed a conceptual framework for explaining the phenomenon of mirror symmetry. Mirror symmetry had been discovered by physicists in string theory as a duality between families of three-dimensional Calabi-Yau manifolds. Kontsevich's proposal uses Fukaya's construction of the A-category of Lagrangian submanifolds on the symplectic side and the derived category of coherent sheaves on the complex side. The theory of mirror symmetry was further enhanced by physicists in the language of D-branes and also by Strominger-Yau-Zaslow in the geometric set-up of (special) Lagrangian torus fibrations. It rapidly expanded its scope across from geometry, topology, algebra to physics.In this volume, leading experts in the field explore recent developments in relation to homological mirror symmetry, Floer theory, D-branes and Gromov-Witten invariants. Kontsevich-Soibelman describe their solution to the mirror conjecture on the abelian variety based on the deformation theory of A-categories, and Ohta describes recent work on the Lagrangian intersection Floer theory by Fukaya-Oh-Ohta-Ono which takes an important step towards a rigorous construction of the A-category. There follow a number of contributions on the homological mirror symmetry, D-branes and the Gromov-Witten invariants, e.g. Getzler shows how the Toda conjecture follows from recent work of Givental, Okounkov and Pandharipande. This volume provides a timely presentation of the important developments of recent years in this rapidly growing field.
Speakers v
Preface vii
Estimated transversality in Symplectic geometry and projective maps
1(30)
D. Auroux
Local Mirror symmetry and five-dimensional gauge theory
31(20)
T. Eguchi
The Toda Conjecture
51(30)
E. Getzler
Examples of special Lagrangian fibrations
81(30)
M. Gross
Linear models of supersymmetric D-brances
111(76)
K. Hori
The Connectedness of the Moduli space of maps to homogeneous spaces
187(16)
B. Kim
R. Pandharipande
Homological mirror symmetry and torus fibrations
203(62)
M. Kontsevich
Y. Soibelman
Genus-1 Virasoro conjecture on the small phase space
265(16)
X. Liu
Obstruction to and deformation of Lagrangian intersection Floer cohomology
281(30)
H. Ohta
Topological open p-branes
311(74)
J.-S. Park
Lagrangian tours fibration and mirror symmetry of Calabi-Yau manifolds
385(44)
W.-D. Ruan
More about vanishing cycles and mutation
429(38)
P. Seidel
Moment maps, monodromy and mirror manifolds
467
R. Thomas