Preface to the First Edition |
|
xiv | (2) |
Acknowledgments |
|
xvi | (2) |
Preface to the Second Edition |
|
xviii | (1) |
Operators and Notational Conventions |
|
xix | |
|
|
1 | (17) |
|
|
1 | (5) |
|
|
6 | (2) |
|
1.3 An Archetypical Problem--ARX Models and the Linear Least Squares Method |
|
|
8 | (5) |
|
1.4 The System Identification Procedure |
|
|
13 | (1) |
|
1.5 Organization of the Book |
|
|
14 | (2) |
|
|
16 | (2) |
Part i: systems and models |
|
18 | (150) |
|
2 Time-Invariant Linear Systems |
|
|
18 | (45) |
|
2.1 Impulse Responses, Disturbances, and Transfer Functions |
|
|
18 | (10) |
|
2.2 Frequency-Domain Expressions |
|
|
28 | (5) |
|
|
33 | (9) |
|
2.4 Single Realization Behavior and Ergodicity Results (*) |
|
|
42 | (2) |
|
2.5 Multivariable Systems (*) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
47 | (5) |
|
Appendix 2A: Proof of Theorem 2.2 |
|
|
52 | (3) |
|
Appendix 2B: Proof of Theorem 2.3 |
|
|
55 | (6) |
|
Appendix 2C: Covariance Formulas |
|
|
61 | (2) |
|
3 Simulation and Prediction |
|
|
63 | (16) |
|
|
63 | (1) |
|
|
64 | (8) |
|
|
72 | (3) |
|
|
75 | (1) |
|
|
75 | (1) |
|
|
76 | (3) |
|
4 Models of Linear Time-Invariant Systems |
|
|
79 | (61) |
|
4.1 Linear Models and Sets of Linear Models |
|
|
79 | (2) |
|
4.2 A Family of Transfer-Function Models |
|
|
81 | (12) |
|
|
93 | (10) |
|
4.4 Distributed Parameter Models (*) |
|
|
103 | (2) |
|
4.5 Model Sets, Model Structures, and Identifiability: Some Formal Aspects (*) |
|
|
105 | (9) |
|
4.6 Identifiability of Some Model Structures |
|
|
114 | (4) |
|
|
118 | (1) |
|
|
119 | (2) |
|
|
121 | (7) |
|
Appendix 4A: Identifiability of Black-Box Multivariable Model Structures |
|
|
128 | (12) |
|
5 Models for Time-varying and Nonlinear Systems |
|
|
140 | (28) |
|
5.1 Linear Time-Varying Models |
|
|
140 | (3) |
|
5.2 Models with Nonlinearities |
|
|
143 | (3) |
|
5.3 Nonlinear State-Space Models |
|
|
146 | (2) |
|
5.4 Nonlinear Black-Box Models: Basic Principles |
|
|
148 | (6) |
|
5.5 Nonlinear Black-Box Models: Neural Networks, Wavelets and Classical Models |
|
|
154 | (2) |
|
|
156 | (5) |
|
5.7 Formal Characterization of Models (*) |
|
|
161 | (3) |
|
|
164 | (1) |
|
|
165 | (1) |
|
|
165 | (3) |
Part ii: methods |
|
168 | (231) |
|
6 Nonparametric Time-and Frequency-Domain Methods |
|
|
168 | (29) |
|
6.1 Transient-Response Analysis and Correlation Analysis |
|
|
168 | (2) |
|
6.2 Frequency-Response Analysis |
|
|
170 | (3) |
|
|
173 | (5) |
|
|
178 | (9) |
|
6.5 Estimating the Disturbance Spectrum (*) |
|
|
187 | (2) |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
191 | (3) |
|
Appendix 6A: Derivation of the Asymptotic Properties of the Spectral Analysis Estimate |
|
|
194 | (3) |
|
7 Parameter Estimation Methods |
|
|
197 | (50) |
|
7.1 Guiding Principles Behind Parameter Estimation Methods |
|
|
197 | (2) |
|
7.2 Minimizing Prediction Errors |
|
|
199 | (4) |
|
7.3 Linear Regressions and the Least-Squares Method |
|
|
203 | (9) |
|
7.4 A Statistical Framework for Parameter Estimation and the Maximum Likelihood Method |
|
|
212 | (10) |
|
7.5 Correlating Prediction Errors with Past Data |
|
|
222 | (2) |
|
7.6 Instrumental-Variable Methods |
|
|
224 | (3) |
|
7.7 Using Frequency Domain Data to Fit Linear Models (*) |
|
|
227 | (6) |
|
|
233 | (1) |
|
|
234 | (2) |
|
|
236 | (9) |
|
Appendix 7A: Proof of the Cramer-Rao Inequality |
|
|
245 | (2) |
|
8 Convergence and Consistency |
|
|
247 | (33) |
|
|
247 | (2) |
|
8.2 Conditions on the Data Set |
|
|
249 | (4) |
|
8.3 Prediction-Error Approach |
|
|
253 | (5) |
|
8.4 Consistency and Identifiability |
|
|
258 | (5) |
|
8.5 Linear Time-Invariant Models: A Frequency-Domain Description of the Limit Model |
|
|
263 | (6) |
|
8.6 The Correlation Approach |
|
|
269 | (4) |
|
|
273 | (1) |
|
|
274 | (1) |
|
|
275 | (5) |
|
9 Asymptotic Distribution of Parameter Estimates |
|
|
280 | (37) |
|
|
280 | (1) |
|
9.2 The Prediction-Error Approach: Basic Theorem |
|
|
281 | (2) |
|
9.3 Expressions for the Asymptotic Variance |
|
|
283 | (7) |
|
9.4 Frequency-Domain Expressions for the Asymptotic Variance |
|
|
290 | (6) |
|
9.5 The Correlation Approach |
|
|
296 | (6) |
|
9.6 Use and Relevance of Asymptotic Variance Expressions |
|
|
302 | (2) |
|
|
304 | (1) |
|
|
305 | (1) |
|
|
305 | (4) |
|
Appendix 9A: Proof of Theorem 9.1 |
|
|
309 | (4) |
|
Appendix 9B: The Asymptotic Parameter Variance |
|
|
313 | (4) |
|
10 Computing the Estimate |
|
|
317 | (44) |
|
10.1 Linear Regressions and Least Squares |
|
|
317 | (9) |
|
10.2 Numerical Solution by Iterative Search Methods |
|
|
326 | (3) |
|
|
329 | (4) |
|
10.4 Two-Stage and Multistage Methods |
|
|
333 | (5) |
|
10.5 Local Solutions and Initial Values |
|
|
338 | (2) |
|
10.6 Subspace Methods for Estimating State Space Models |
|
|
340 | (11) |
|
|
351 | (1) |
|
|
352 | (1) |
|
|
353 | (8) |
|
11 Recursive Estimation Methods |
|
|
361 | (38) |
|
|
361 | (2) |
|
11.2 The Recursive Least-Squares Algorithm |
|
|
363 | (6) |
|
11.3 The Recursive IV Method |
|
|
369 | (1) |
|
11.4 Recursive Prediction-Error Methods |
|
|
370 | (4) |
|
11.5 Recursive Pseudolinear Regressions |
|
|
374 | (2) |
|
11.6 The Choice of Updating Step |
|
|
376 | (6) |
|
|
382 | (4) |
|
|
386 | (1) |
|
|
387 | (1) |
|
|
388 | (1) |
|
Appendix 11A: Techniques for Asymptotic Analysis of Recursive Algorithms |
|
|
389 | (9) |
|
|
398 | (1) |
part iii: user's choices |
|
399 | (166) |
|
12 Options and Objectives |
|
|
399 | (9) |
|
|
399 | (1) |
|
|
400 | (4) |
|
|
404 | (2) |
|
|
406 | (1) |
|
|
406 | (1) |
|
|
406 | (2) |
|
|
408 | (50) |
|
13.1 Some General Considerations |
|
|
408 | (3) |
|
13.2 Informative Experiments |
|
|
411 | (4) |
|
13.3 Input Design for Open Loop Experiments |
|
|
415 | (13) |
|
13.4 Identification in Closed Loop: Identifiability |
|
|
428 | (6) |
|
13.5 Approaches to Closed Loop Identification |
|
|
434 | (7) |
|
13.6 Optimal Experiment Design for High-Order Black-Box Models |
|
|
441 | (3) |
|
13.7 Choice of Sampling Interval and Presampling Filters |
|
|
444 | (8) |
|
|
452 | (1) |
|
|
453 | (1) |
|
|
454 | (4) |
|
|
458 | (19) |
|
14.1 Drifts and Detrending |
|
|
458 | (3) |
|
14.2 Outliers and Missing Data |
|
|
461 | (3) |
|
14.3 Selecting Segments of Data and Merging Experiments |
|
|
464 | (2) |
|
|
466 | (4) |
|
14.5 Formal Design of Prefiltering and Input Properties |
|
|
470 | (4) |
|
|
474 | (1) |
|
|
475 | (1) |
|
|
475 | (2) |
|
15 Choice of Identification Criterion |
|
|
477 | (14) |
|
|
477 | (2) |
|
15.2 Choice of Norm: Robustness |
|
|
479 | (6) |
|
15.3 Variance-Optimal Instruments |
|
|
485 | (3) |
|
|
488 | (1) |
|
|
489 | (1) |
|
|
490 | (1) |
|
16 Model Structure Selection and Model Validation |
|
|
491 | (29) |
|
16.1 General Aspects of the Choice of Model Structure |
|
|
491 | (2) |
|
16.2 A Priori Considerations |
|
|
493 | (2) |
|
16.3 Model Structure Selection Based on Preliminary Data Analysis |
|
|
495 | (3) |
|
16.4 Comparing Model Structures |
|
|
498 | (11) |
|
|
509 | (2) |
|
|
511 | (5) |
|
|
516 | (11) |
|
|
517 | (1) |
|
|
518 | (2) |
|
17 System Identification in Practice |
|
|
520 | (19) |
|
17.1 The Tool: Interactive Software |
|
|
520 | (2) |
|
17.2 The Practical Side of System Identification |
|
|
522 | (3) |
|
|
525 | (11) |
|
17.4 What Does System Identification Have To Offer? |
|
|
536 | (3) |
|
Appendix I Some Concepts From Probability Theory |
|
|
539 | (4) |
|
Appendix II Some Statistical Techniques for Linear Regressions |
|
|
543 | (22) |
|
II.1 Linear Regressions and the Least Squares Estimate |
|
|
543 | (8) |
|
II.2 Statistical Properties of the Least-Squares Estimate |
|
|
551 | (8) |
|
II.3 Some Further Topics in Least-Squares Estimation |
|
|
559 | (6) |
|
|
564 | (1) |
References |
|
565 | (31) |
Subject Index |
|
596 | (7) |
Reference Index |
|
603 | |