Atnaujinkite slapukų nuostatas

El. knyga: Syzygies and Hilbert Functions

Edited by (Cornell University, Ithaca, New York)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Primarily drawn from an October 2005 conference held at Cornell, ten papers present recent results on Hilbert functions and free resolutions. The longest papers explore questions about Castelnuovo-Mumford regularity and illustrate how bigraded commutative algebra differs from the classical graded case. Other topics include Hilbert coefficients of ideals, Lex-plus-powers ideals, multiplicity conjectures, the geometry of Hilbert functions, infinite free resolutions over toric rings, and subspace arrangements. Annotation ©2007 Book News, Inc., Portland, OR (booknews.com)

Hilbert functions and resolutions are both central objects in commutative algebra and fruitful tools in the fields of algebraic geometry, combinatorics, commutative algebra, and computational algebra. Spurred by recent research in this area, Syzygies and Hilbert Functions explores fresh developments in the field as well as fundamental concepts.

Written by international mathematics authorities, the book first examines the invariant of Castelnuovo-Mumford regularity, blowup algebras, and bigraded rings. It then outlines the current status of two challenging conjectures: the lex-plus-power (LPP) conjecture and the multiplicity conjecture. After reviewing results of the geometry of Hilbert functions, the book considers minimal free resolutions of integral subschemes and of equidimensional Cohen-Macaulay subschemes of small degree. It also discusses relations to subspace arrangements and the properties of the infinite graded minimal free resolution of the ground field over a projective toric ring. The volume closes with an introduction to multigraded Hilbert functions, mixed multiplicities, and joint reductions.

By surveying exciting topics of vibrant current research, Syzygies and Hilbert Functions stimulates further study in this hot area of mathematical activity.
Introduction. Some Results and Questions on Castelnuovo-Mumford
Regularity. Hilbert Coefficients of Ideals With a View Toward Blowup Algebra.
A Case Study in Bigraded Commutative Algebra. Lex-plus-powers Ideals.
Multiplicity Conjectures. The Geometry of Hilbert Functions. Resolutions of
Subschemes of Small Degree. Koszul Toric Rings. Resolutions and Subspace
Arrangements. Multi-graded Hilbert Functions, Mixed Multiplicities.
Cornell University, Ithaca, New York