Atnaujinkite slapukų nuostatas

El. knyga: Temporal Network Theory

Edited by , Edited by
  • Formatas: EPUB+DRM
  • Serija: Computational Social Sciences
  • Išleidimo metai: 20-Nov-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031303999
  • Formatas: EPUB+DRM
  • Serija: Computational Social Sciences
  • Išleidimo metai: 20-Nov-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031303999

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book focuses on the theoretical side of temporal network research and gives an overview of the state of the art in the field. Curated by two pioneers in the field who have helped to shape it, the book contains contributions from many leading researchers. Temporal networks fill the border area between network science and time-series analysis and are relevant for epidemic modeling, optimization of transportation and logistics, as well as understanding biological phenomena.





Over the past 20 years, network theory has proven to be one of the most powerful tools for studying and analyzing complex systems. Temporal network theory is perhaps the most recent significant development in the field in recent years, with direct applications to many of the big data sets. This book appeals to students, researchers, and professionals interested in theory and temporal networksa field that has grown tremendously over the last decade.





This second edition of Temporal NetworkTheory extends the first with three chapters highlighting recent developments in the interface with machine learning.




Petter Holme is a professor of network science at the Department of Computer Science, Aalto University, Finland. His research interests cover many aspects of network sciencefrom data science to theory. He has about 200 scientific publications, including about 30 on temporal networks.





Jari Saramäki is a professor of computational science at Aalto University, Finland. His research focuses on complex systems and networks, with applications ranging from computational social science to network neuroscience and biomedicine.