Atnaujinkite slapukų nuostatas

El. knyga: Text Analytics for Corpus Linguistics and Digital Humanities: Simple R Scripts and Tools

(University of Zurich, Switzerland)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"Helping to understand and apply state-of-the-art text analytics methods to detect and visualize phenomena in text data, this book shows readers how to conduct experiments with their own corpora and research questions, underpin their theories, quantify the differences and pinpoint characteristics. It also demonstrates how to use the programming language R, as well as simple alternatives and additions to R, to conduct experiments and employ visualisations by example, with extensible R-code, recipes, linksto corpora, and a wide range of methods. The methods introduced can be used across texts of all disciplines, from history or literature to party manifestos and patient reports"--

Do you want to gain a deeper understanding of how big tech analyzes and exploits our text data, or investigate how political parties differ by analyzing textual styles, associations and trends in documents? Or create a map of a text collection and write a simple QA system yourself?

This book explores how to apply state-of-the-art text analytics methods to detect and visualize phenomena in text data. Solidly based on methods from corpus linguistics, natural language processing, text analytics and digital humanities, this book shows readers how to conduct experiments with their own corpora and research questions, underpin their theories, quantify the differences and pinpoint characteristics. Case studies and experiments are detailed in every chapter using real-world and open access corpora from politics, World English, history, and literature. The results are interpreted and put into perspective, pitfalls are pointed out, and necessary pre-processing steps are demonstrated. This book also demonstrates how to use the programming language R, as well as simple alternatives and additions to R, to conduct experiments and employ visualisations by example, with extensible R-code, recipes, links to corpora, and a wide range of methods. The methods introduced can be used across texts of all disciplines, from history or literature to party manifestos and patient reports.

Daugiau informacijos

Introduces readers to powerful natural language processing methods and provides easy-to-use R scripts and tools for text analytics.

List of Figures
List of Tables
Acknowledgements
1. Introduction
2. Spikes of Frequencies and First Steps in UNIX
3. Frequency Lists and First Steps in R
4. Overuse and Keywords and Using R Libraries
5. Document Classification and Supervised ML in LightSide and R
6. Topic Modelling and Unsupervised ML with Mallet and R
7. Kernel Density Estimation for Conceptual Maps
8. Distributional Semantics
9. BERT Models
10. Conclusions
References
Index

Gerold Schneider is Adjunct Professor at the Department of Computational Linguistics of the University of Zurich, Switzerland.