Atnaujinkite slapukų nuostatas

El. knyga: Theoretical Physics 3: Electrodynamics

  • Formatas: PDF+DRM
  • Išleidimo metai: 28-Jun-2016
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319401683
  • Formatas: PDF+DRM
  • Išleidimo metai: 28-Jun-2016
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319401683

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This textbook offers a clear and comprehensive introduction to electrodynamics, one of the core components of undergraduate physics courses. The first part of the book describes the interaction of electric charges and magnetic moments by introducing electro- and magnetostatics. The second part of the book establishes deeper understanding of electrodynamics with the Maxwell equations, quasistationary fields and electromagnetic fields. All sections are accompanied by a detailed introduction to the math needed.





Ideally suited to undergraduate students with some grounding in classical and analytical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. 

About the Theoretical Physics series





Translated from the renowned and highly successful German editions, the eight volumes of this series cover the complete core curriculum of theoretical physics at undergraduate level. Each volume is self-contained and provides all the material necessary for the individual course topic. Numerous problems with detailed solutions support a deeper understanding. Wolfgang Nolting is famous for his refined didactical style and has been referred to as the "German Feynman" in reviews.

Daugiau informacijos

Der Aufgaben- und Losungsteil ist fur Studenten sehr gut. Dr. Jurgen Dietrich, TU Dortmund
1 Mathematical Preparations
1(46)
1.1 Dirac's δ-Function
1(6)
1.2 Taylor Expansion
7(5)
1.3 Surface Integrals
12(6)
1.3.1 Oriented Surface Elements
12(3)
1.3.2 Surface Integrals
15(3)
1.4 Differentiation Processes for Fields
18(8)
1.4.1 Integral Representation of the Divergence
18(4)
1.4.2 Integral Representation of the Curl
22(4)
1.5 Integration Theorems
26(8)
1.5.1 The Gauss Theorem
26(3)
1.5.2 The Stokes Theorem
29(4)
1.5.3 The Green Theorems
33(1)
1.6 Decomposition and Uniqueness Theorem for Vector Fields
34(5)
1.6.1 Decomposition Theorem
36(1)
1.6.2 Uniqueness Theorem
37(2)
1.7 Exercises
39(6)
1.8 Self-Examination Questions
45(2)
2 Electrostatics
47(116)
2.1 Basic Concepts
47(24)
2.1.1 Charges and Currents
47(4)
2.1.2 Coulomb's Law, Electric Field
51(8)
2.1.3 Maxwell Equations of Electrostatics
59(5)
2.1.4 Field-Behavior at Interfaces
64(1)
2.1.5 Electrostatic Field Energy
65(4)
2.1.6 Exercises
69(2)
2.2 Simple Electrostatic Problems
71(26)
2.2.1 Parallel-Plate Capacitor
71(2)
2.2.2 Spherical Capacitor
73(2)
2.2.3 Cylindrical Capacitor
75(2)
2.2.4 The Dipole
77(4)
2.2.5 Dipole-Layer
81(3)
2.2.6 The Quadrupole
84(4)
2.2.7 Multipole Expansion
88(5)
2.2.8 Interaction of a Charge Distribution with an External Electric Field
93(2)
2.2.9 Exercises
95(2)
2.3 Boundary-Value Problems in Electrostatics
97(43)
2.3.1 Formulation of the Boundary-Value Problem
97(2)
2.3.2 Classification of the Boundary Conditions
99(4)
2.3.3 Green's Function
103(5)
2.3.4 Method of Image Charges
108(7)
2.3.5 Expansion in Orthogonal Functions
115(6)
2.3.6 Separation of Variables
121(6)
2.3.7 Solution of the Laplace Equation in Spherical Coordinates
127(3)
2.3.8 Potential of a Point Charge, Spherical Multipole Moments
130(4)
2.3.9 Exercises
134(6)
2.4 Electrostatics of Dielectrics (Macroscopic Media)
140(18)
2.4.1 Macroscopic Field Quantities
141(9)
2.4.2 Molecular Polarizability
150(4)
2.4.3 Boundary-Value Problems, Electrostatic Energy
154(2)
2.4.4 Exercises
156(2)
2.5 Self-Examination Questions
158(5)
3 Magnetostatics
163(44)
3.1 The Electric Current
164(7)
3.1.1 Electric Current: Ordered Motion of Electric Charges
164(1)
3.1.2 Current Intensity I
165(1)
3.1.3 Current Density j
165(1)
3.1.4 Continuity Equation
166(1)
3.1.5 Ohm's Law
167(2)
3.1.6 Thread of Current
169(1)
3.1.7 Electric Power
169(1)
3.1.8 Special Case: Very Thin Wire ⇒ Thread of Current
170(1)
3.2 Basics of Magnetostatics
171(9)
3.2.1 Biot-Savart Law
171(4)
3.2.2 Maxwell Equations
175(1)
3.2.3 Vector Potential
176(2)
3.2.4 Exercises
178(2)
3.3 Magnetic Moment
180(8)
3.3.1 Magnetic Induction of a Local Current Distribution
180(4)
3.3.2 Force and Torque on a Local Current Distribution
184(3)
3.3.3 Exercises
187(1)
3.4 Magnetostatics in Matter
188(16)
3.4.1 Macroscopic Field Quantities
188(5)
3.4.2 Classification of Magnetic Materials
193(4)
3.4.3 Field-Behavior at Interfaces
197(1)
3.4.4 Boundary-Value Problems
198(5)
3.4.5 Exercises
203(1)
3.5 Self-Examination Questions
204(3)
4 Electrodynamics
207(214)
4.1 Maxwell Equations
207(20)
4.1.1 Faraday's Law of Induction
207(5)
4.1.2 Maxwell's Supplement
212(2)
4.1.3 Electromagnetic Potentials
214(4)
4.1.4 Field Energy
218(4)
4.1.5 Field Momentum
222(3)
4.1.6 Exercises
225(2)
4.2 Quasi-Stationary Fields
227(30)
4.2.1 Mutual Induction and Self-induction
228(6)
4.2.2 Magnetic Field Energy
234(1)
4.2.3 Alternating Currents (AC)
235(8)
4.2.4 The Oscillator Circuit
243(6)
4.2.5 Resonance
249(2)
4.2.6 Switching Processes
251(3)
4.2.7 Exercises
254(3)
4.3 Electromagnetic Waves
257(97)
4.3.1 Homogeneous Wave Equation
258(1)
4.3.2 Plane Waves
259(5)
4.3.3 Polarization of the Plane Waves
264(5)
4.3.4 Wave Packets
269(5)
4.3.5 Spherical Waves
274(3)
4.3.6 Fourier Series, Fourier Integrals
277(10)
4.3.7 General Solution of the Wave Equation
287(3)
4.3.8 Energy Transport in Wave Fields
290(2)
4.3.9 Wave Propagation in Electric Conductors
292(9)
4.3.10 Reflection and Refraction of Electromagnetic Waves at an Insulator
301(16)
4.3.11 Interference and Diffraction
317(3)
4.3.12 Kirchhoff's Formula
320(3)
4.3.13 Diffraction by a Screen with a Small Aperture
323(4)
4.3.14 Diffraction by the Circular Disc; Poisson Spot
327(3)
4.3.15 Diffraction by a Circular Aperture
330(2)
4.3.16 Diffraction by the Crystal Lattice
332(8)
4.3.17 The Transition from Wave Optics to `Geometrical Optics'
340(7)
4.3.18 Exercises
347(7)
4.4 Elements of Complex Analysis
354(27)
4.4.1 Sequences of Numbers
355(1)
4.4.2 Complex Functions
356(3)
4.4.3 Integral Theorems
359(6)
4.4.4 Series of Complex Functions
365(9)
4.4.5 Cauchy's Residue Theorem
374(6)
4.4.6 Exercises
380(1)
4.5 Creation of Electromagnetic Waves
381(34)
4.5.1 Inhomogeneous Wave Equation
381(5)
4.5.2 Temporally Oscillating Sources
386(3)
4.5.3 Electric Dipole Radiation
389(6)
4.5.4 Electric Quadrupole and Magnetic Dipole Radiation
395(6)
4.5.5 Radiation of Moving Point Charges
401(12)
4.5.6 Exercises
413(2)
4.6 Self-Examination Questions
415(6)
A Solutions of the Exercises 421(232)
Index 653
Prof. Dr Wolfgang Nolting is an emeritus professor of physics of the German Humboldt University in Berlin, whose research interests span solid state physics and magnetism. He has over 40 years of teaching experience at various institutions including the University of Münster, ETH Zürich, the University of Würzburg and the Universidad de Valladolid in Spain. His acclaimed German textbook series on Theoretical Physics has now attained the rank of a standard work in physics education.