Atnaujinkite slapukų nuostatas

El. knyga: Theory and Applications of Colloidal Suspension Rheology

Edited by , Edited by (University of Delaware)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"An essential text on practical application, theory, and simulation, written by an international coalition of experts in the field and edited by the authors of Colloidal Suspension Rheology. This up-to-date work builds upon the prior work as a valuable guide to formulation and processing, as well as fundamental rheology of colloidal suspensions. Thematically, theory and simulation are connected to industrial application by consideration of colloidal interactions, particle properties, and suspension microstructure. Important classes of model suspensions including gels, glasses, and soft particles are covered so as to develop a deeper understanding of industrial systems ranging from carbon black slurries, paints and coatings, asphalt, cement, and mine tailings, to natural suspensions such as biocolloids, protein solutions, and blood. Systematically presenting the established facts in this multidisciplinary field, this book is the perfect aid for academic researchers, graduate students, and industrial practitioners alike"--

Recenzijos

'This is a worthy addition to the famed 'Cambridge Series in Chemical Engineering.' ... this book should prove useful to those who work with or study such materials.' M. R. King, Choice

Daugiau informacijos

Essential text on the practical application and theory of colloidal suspension rheology, written by an international coalition of experts.
List of Contributors
xiii
Preface xv
General List of Symbols xviii
Useful Physical Constants and Values xxii
1 Introduction To Colloidal Suspension Rheology
1(43)
Norman J. Wagner
Jan Mewis
1.1 Structure of this
Chapter and the Book
1(2)
1.2 Introduction and Observations
3(1)
1.3 Colloidal Hard Spheres
4(6)
1.3.1 Characteristic Properties of Brownian Particles
5(2)
1.3.2 Brownian Hard Sphere Phase Behavior and Diffusion
7(3)
1.4 Brownian Hard Sphere Rheology
10(11)
1.4.1 Behavior at Low Shear Rates and Linear Viscoelasticity
10(3)
1.4.2 Nonlinear Shear Rheology
13(2)
1.4.3 Extensional and Bulk Viscosities
15(1)
1.4.4 Normal Stress Differences
16(1)
1.4.5 Shear Thickening and the Shear Thickened State
17(4)
1.5 Colloidal Interaction Potentials
21(4)
1.6 Colloidal Phase Behavior beyond Brownian Hard Spheres
25(3)
1.7 Thixotropy
28(6)
Story 1.1 Ruth N. Weltmann and Early Studies of Thixotropy
34(1)
Appendix: Rheological Definitions
34(4)
Chapter Notation
38(1)
References
39(5)
2 Theory Of Colloidal Suspension Structure, Dynamics, And Rheology
44(76)
Gerhard Nagele
Jan K. G. Dhont
Thomas Voigtmann
2.1 Introduction
44(3)
2.2 Low Reynolds Number Hydrodynamics
47(10)
2.2.1 Time and Length Scales, Creeping-Flow Equations, and Oseen Tensor
48(4)
2.2.2 Hydrodynamic Interactions of Spheres in Shear Flow
52(5)
2.3 Smoluchowski Equation for Particles in Shear Flow
57(4)
2.4 Langevin Dynamics of Brownian Particles
61(11)
2.4.1 Single Microsphere in Shear Flow
62(5)
2.4.2 Many-Particles Langevin Equations for Shear Flow
67(5)
2.5 Suspension Rheology
72(23)
2.5.1 Effective Navier-Stokes Equation and Macroscopic Stress
72(5)
2.5.2 Rheological Properties and Flow Microstructure
77(5)
2.5.3 Linear Rheology and Equilibrium Green-Kubo Relation
82(6)
2.5.4 Applications of the Green-Kubo Relation
88(2)
2.5.5 Generalized Stokes-Einstein Relations
90(5)
2.6 Mode Coupling Theory of Dense Suspension Flow
95(16)
2.6.1 MCT Description of Linear Rheology
96(5)
2.6.2 Linear Rheology at the Glass Transition
101(4)
2.6.3 Integration through Transients Approach to Nonlinear Rheology
105(6)
2.7 Summary and Outlook
111(1)
References
111(9)
3 Methods Of Colloidal Simulation
120(35)
Ronald G. Larson
3.1 Introduction
120(5)
3.2 Continuum Solvent Methods - Unmeshed Solvent
125(7)
3.2.1 Brownian or Langevin Dynamics
125(3)
3.2.2 Stokesian Particle (SP) Methods
128(3)
3.2.3 Boundary Element Analysis
131(1)
3.3 Continuum Solvent Methods -- Meshed Solvent
132(2)
3.3.1 Arbitrary Lagrangian--Eulerian Method (ALE)
132(2)
3.4 Particle Solvent Methods -- Unmeshed Solvent
134(7)
3.4.1 Smoothed Particle Hydrodynamics (SPH)
134(2)
3.4.2 Dissipative Particle Dynamics (DPD)
136(5)
3.5 Particle Solvent Methods -- Meshed Solvent
141(4)
3.5.1 Multi-Particle Collision (MPC) Dynamics, or Stochastic Rotation Dynamics (SRD)
141(1)
3.5.2 Lattice Boltzmann Method
142(3)
3.6 Summary
145(1)
Chapter Notation
146(1)
References
147(8)
4 Microstructure Under Flow
155(18)
Norman J. Wagner
4.1 Introduction
155(1)
4.2 Structure Factors from Scattering
156(9)
4.2.1 Suspension Structure under Flow
156(7)
4.2.2 Stresses Derived from the Microstructure
163(2)
4.3 Direct Observation Using Microscopy
165(4)
4.4 Summary and Outlook
169(1)
References
169(4)
5 Rheology Of Colloidal Glasses And Gels
173(54)
George Petekidis
Norman J. Wagner
5.1 Introduction
173(2)
5.2 Landmark Observations
175(2)
5.3 Colloidal Glasses due to Interparticle Repulsion
177(13)
5.3.1 Steady Shear Rheology
177(3)
5.3.2 Linear Viscoelasticity - Oscillatory Rheology
180(2)
5.3.3 Transient Rheology
182(4)
5.3.4 Stress Relaxation
186(1)
5.3.5 Yielding
187(2)
5.3.6 Shear Localization: Shear Banding and Slip in HS Glasses
189(1)
5.3.7 Summary and Outlook
189(1)
5.4 Colloidal Gels and Attractive Glasses
190(28)
5.4.1 The Mechanisms and the Underlying State Diagram
191(2)
5.4.2 Gel Micromechanics and Local Cluster Structure
193(6)
5.4.3 Rheology of Phase Separating Gels and Attractive Glasses
199(8)
5.4.4 Rheology of Homogeneous Gels
207(9)
5.4.5 Summary and Outlook
216(2)
Chapter Notation
218(1)
References
218(9)
6 Suspensions Of Soft Colloidal Particles
227(64)
Dimitris Vlassopoulos
Michel Cloitre
6.1 Introduction
227(1)
6.2 Landmark Observations
227(6)
6.3 Classification of Soft Colloids
233(5)
6.3.1 Spherical Particles of Varying Internal Microstructure
233(3)
6.3.2 Nonspherical Particles
236(1)
6.3.3 Particle Elasticity
236(1)
6.3.4 Solvent (Suspending Medium) Free Colloids
237(1)
6.4 Soft Particle Interactions and State Diagrams
238(5)
6.4.1 Repulsive Interactions
238(1)
6.4.2 From Repulsive to Attractive Interactions
239(1)
6.4.3 Defining the Volume Fraction: Effective versus Actual Volume Fraction
240(2)
6.4.4 State Diagrams for Archetype Soft Colloids
242(1)
6.4.5 Shear-Induced Crystallization
243(1)
Story 6.1 The Origins of Soft Particle Rheology
243(1)
6.5 Linear Viscoelasticity and Diffusion Dynamics
244(7)
6.5.1 Shear Viscosity and Self-diffusion
244(3)
6.5.2 Viscoelastic Relaxation Spectrum and Plateau Modulus
247(2)
6.5.3 Temperature-Induced Effects
249(2)
6.6 Flow Properties of Soft Particle Suspensions
251(11)
6.6.1 Phenomenology of Yielding and Flow
251(3)
6.6.2 Shear Thinning Behavior of Liquid Suspensions
254(1)
6.6.3 Yielding and Flow of Repulsive Entropic Glasses
255(1)
6.6.4 Yielding and Flow of Repulsive Jammed Glasses
256(4)
6.6.5 Wall Slip
260(1)
6.6.6 Shear Banding
261(1)
6.7 Slow Dynamics
262(6)
6.7.1 Rheological Aging
262(3)
6.7.2 Microscopic Signatures of Aging
265(2)
6.7.3 Internal or Residual Stress after Flow Cessation
267(1)
6.8 Mixtures and Osmotic Interactions
268(6)
6.8.1 Soft Colloid-Polymer Mixtures
268(3)
6.8.2 Binary Colloidal Mixtures Involving Soft Particles
271(2)
6.8.3 Colloidal Mixtures in the Absence of Solvent Background
273(1)
6.9 Summary
274(1)
Chapter Notation
275(1)
References
276(15)
7 Biocolloid Rheology
291(25)
Surita Bhatia
Wendy Horn
7.1 Landmark Observations and Example Applications
291(3)
7.1.1 Colloid Rheology in Pharmaceutical and Biomaterials Applications
291(1)
7.1.2 Colloidal Rheology of Proteins in Food and Biopharmaceutical Applications
292(2)
7.2 Self-assembled Colloids: Block Copolymer Micelles
294(8)
7.2.1 AB and ABA Block Copolymers: Cubic Gels and Thermoresponsive Behavior
294(5)
7.2.2 Associative ABA Triblock Copolymers
299(1)
7.2.3 Specific Interactions: Stereocomplexation and Crystallinity
300(2)
7.3 Protein Solutions
302(5)
7.4 Conclusions and Outlook
307(1)
Acknowledgments
307(1)
Chapter Notation
307(1)
References
308(8)
8 Hemorheology
316(36)
Antony N. Beris
8.1 Introduction
316(1)
Story 8.1 Early History of the Study of Blood, Blood Flow, and Hemorheology
317(5)
8.2 Structural Overview -- Mesoscopic Micromechanical Effects and Models
322(2)
8.3 Steady State Shear Blood Rheology Models
324(5)
8.4 Models for Transient Shear Flow
329(9)
8.4.1 Simple Viscoelastic Models: The Anand--Kwack--Masud (AKM) Model
330(1)
8.4.2 Structural Thixotropic Models: The Apostolidis--Armstrong--Beris (AAB) Model
331(3)
8.4.3 Hybrid Thixotropic--Viscoelastic Models: The Horner-Armstrong--Wagner--Beris (HAWB) Model
334(4)
8.4.4 Multimode Viscoelastic Models
338(1)
8.5 Comparison of Model Predictions to Steady Shear and UD-LAOS Experimental Data
338(3)
8.5.1 Steady State Blood Rheology Data and Model Fits
339(1)
8.5.2 UD-LAOS Time Dependent Blood Rheology Data and Model Fits
339(2)
8.6 Summary and Outlook
341(1)
Acknowledgments
342(1)
Chapter Notation
342(1)
References
343(9)
9 Applications
352(55)
9.1 Introduction
352(1)
Jan Mewis
Norman J. Wagner
9.2 Paints
353(14)
Alex Routh
9.2.1 Relevant Shear Rates
354(2)
9.2.2 Low Shear Flows
356(4)
9.2.3 High Shear Flows during Application of the Coating
360(1)
9.2.4 Coating Defects
361(2)
9.2.5 Viscosity Curve and the Design of Desired Rheology
363(4)
9.3 Carbon Blacks
367(8)
Jeffrey Richards
9.3.1 Introduction
367(1)
9.3.2 Background: Structural Hierarchy in Carbon Black Suspensions
367(2)
9.3.3 Rheological Characterization
369(4)
9.3.4 Electrical Characterization
373(2)
9.3.5 Conclusions
375(1)
9.4 Bitumen/Asphalt
375(5)
Norman J. Wagner
9.5 Cement, Mortar, and Concrete
380(9)
Nicolas Roussel
9.5.1 Background: "Fresh" Cement-Based Products
380(1)
9.5.2 Typical Rheological Behavior and Typical Shaping Processes
381(2)
9.5.3 Physical Origin of the Rheological Behavior: Upscaling between the Cement Matrix and Mortar or Concrete
383(1)
9.5.4 Physical Origin of the Rheological Behavior: Interactions within the Cement Matrix
384(4)
9.5.5 Tuning the Rheological Behavior of Fresh Cement-Based Products
388(1)
9.6 Large Scale Processing
389(8)
Peter Scales
Chapter Notation
397(1)
References
398(9)
Index 407
Norman J. Wagner holds the Unidel Robert L. Pigford Chair in Chemical and Biomolecular Engineering at the University of Delaware. Internationally recognized for his research and applications of colloidal suspensions, he received the Bingham medal and was elected to both the National Academy of Engineering and National Academy of Inventors. Jan Mewis is Emeritus Professor of the Chemical Engineering Department at the Katholieke Universiteit Leuven. He has lectured worldwide and was chairman of the International Committee on Rheology. He received the Bingham medal in the US, as well as the Gold medal of the British Society of Rheology.