Atnaujinkite slapukų nuostatas

Theory of Control Systems Described by Differential Inclusions 1st ed. 2016 [Kietas viršelis]

  • Formatas: Hardback, 344 pages, aukštis x plotis: 235x155 mm, weight: 7209 g, 5 Illustrations, color; 45 Illustrations, black and white; XI, 344 p. 50 illus., 5 illus. in color., 1 Hardback
  • Serija: Springer Tracts in Mechanical Engineering
  • Išleidimo metai: 23-Jun-2016
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3662492431
  • ISBN-13: 9783662492437
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 344 pages, aukštis x plotis: 235x155 mm, weight: 7209 g, 5 Illustrations, color; 45 Illustrations, black and white; XI, 344 p. 50 illus., 5 illus. in color., 1 Hardback
  • Serija: Springer Tracts in Mechanical Engineering
  • Išleidimo metai: 23-Jun-2016
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3662492431
  • ISBN-13: 9783662492437
Kitos knygos pagal šią temą:
This book provides a brief introduction to the theory of finitedimensional differential inclusions, and deals in depth with control of threekinds of differential inclusion systems. The authors introduce the algebraicdecomposition of convex processes, the stabilization of polytopic systems, andobservations of Luré systems. They also introduce the elemental theory offinite dimensional differential inclusions, and the properties and designs ofthe control systems described by differential inclusions. Addressing thematerial with clarity and simplicity, the book includes recent researchachievements and spans all concepts, concluding with a critical mathematicalframework.This book is intended for researchers, teachers and postgraduatestudents in the area of automatic control engineering.

Convex sets and Convex Functions.- Set-valued Mappings and Differential Inclusions.- Convex Processes.- Linear Polytope Control Systems.- Luré Differential Inclusions.
Convex sets and Convex Functions.- Set-valued Mappings and Differential
Inclusions.- Convex Processes.- Linear Polytope Control Systems.- Luré
Differential Inclusions.