Atnaujinkite slapukų nuostatas

El. knyga: Theory of Critical Distances: A New Perspective in Fracture Mechanics

(Department of Mechanical Engineering, Trinity College, Dublin, Ireland)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 07-Jul-2010
  • Leidėjas: Elsevier Science Ltd
  • Kalba: eng
  • ISBN-13: 9780080554723
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 07-Jul-2010
  • Leidėjas: Elsevier Science Ltd
  • Kalba: eng
  • ISBN-13: 9780080554723
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Critical distance methods are extremely useful for predicting fracture and fatigue in engineering components. They also represent an important development in the theory of fracture mechanics. Despite being in use for over fifty years in some fields, there has never been a book about these methods – until now.

So why now? Because the increasing use of computer-aided stress analysis (by FEA and other techniques) has made these methods extremely easy to use in practical situations. This is turn has prompted researchers to re-examine the underlying theory with renewed interest.

The Theory of Critical Distances begins with a general introduction to the phenomena of mechanical failure in materials: a basic understanding of solid mechanics and materials engineering is assumed, though appropriate introductory references are provided where necessary. After a simple explanation of how to use critical distance methods, and a more detailed exposition of the methods including their history and classification, the book continues by showing examples of how critical distance approaches can be applied to predict fracture and fatigue in different classes of materials. Subsequent chapters include some more complex theoretical areas, such as multiaxial loading and contact problems, and a range of practical examples using case studies of real engineering components taken from the author’s own consultancy work.

The Theory of Critical Distances will be of interest to a range of readers, from academic researchers concerned with the theoretical basis of the subject, to industrial engineers who wish to incorporate the method into modern computer-aided design and analysis.

  • Comprehensive collection of published data, plus new data from the author's own laboratories
  • A simple 'how-to-do-it' exposition of the method, plus examples and case studies
  • Detailed theoretical treatment
  • Covers all classes of materials: metals, polymers, ceramics and composites
  • Includes fracture, fatigue, fretting, size effects and multiaxial loading

Daugiau informacijos

First ever book on Critical Distance methods
Preface xiii
Nomenclature xvii
Introduction
1(20)
Stress-Strain Curves
2(1)
Failure Mechanisms
3(3)
Failure at the atomic level
3(1)
Failure modes in engineering components
3(3)
Stress Concentrations
6(2)
Elastic Stress Fields for Notches and Cracks
8(3)
Stress fields at the microstructural level
10(1)
Fracture Mechanics
11(5)
The effect of constraint on fracture toughness
13(1)
Non-linear behaviour: Plasticity and damage zones
14(2)
Elastic-plastic fracture mechanics
16(1)
The Failure of Notched Specimens
16(1)
Finite Element Analysis
17(1)
Concluding Remarks: Limitations and Challenges in Failure Prediction
18(3)
The Theory of Critical Distances: Basics
21(12)
Introduction
21(1)
Example 1: Brittle Fracture in a Notched Specimen
21(4)
Necessary information: The stress-distance curve and material parameters
23(1)
The point method
24(1)
Example 2: Fatigue Failure in an Engineering Component
25(1)
Relating the TCD to LEFM
26(1)
Finding Values for the Material Constants
27(1)
Some Other TCD Methods: The LM, AM and VM
28(2)
The line method
28(1)
The area and volume methods
29(1)
Example 3: Predicting Size Effects
30(1)
Concluding Remarks
31(2)
The Theory of Critical Distances in Detail
33(18)
Introduction
34(1)
History
34(4)
Early work
34(2)
Parallel developments
36(2)
Related Theories
38(9)
The imaginary radius
38(1)
Introduced crack and imaginary crack models
39(2)
Linking the imaginary crack method to the PM and LM
41(2)
The finite crack extension method: `Finite fracture mechanics'
43(2)
Linking FFM to the other methods
45(1)
Combined stress and energy methods
45(2)
What is the TCD? Towards a General Definition
47(4)
Other Theories of Fracture
51(12)
Introduction
52(1)
Some Classifications
52(2)
Mechanistic Models
54(1)
Statistical Models
55(1)
Modified Fracture Mechanics
55(2)
Plastic-Zone and Process-Zone Theories
57(2)
Damage Mechanics
59(1)
Concluding Remarks
60(3)
Ceramics
63(30)
Introduction
63(1)
Engineering Ceramics
64(20)
The effect of small defects
66(8)
Notches
74(6)
Large blunt notches
80(1)
Discussion: other theories and observations
81(3)
Building materials
84(2)
Geological Materials
86(1)
Nanomaterials
87(2)
Concluding Remarks
89(4)
Polymers
93(26)
Introduction
93(2)
Notches
95(12)
Sharp notches
95(4)
A wider range of notches
99(7)
V-Shaped notches
106(1)
Size Effects
107(2)
Constraint and the Ductile-Brittle Transition
109(4)
Strain Rate and Temperature Effects
113(1)
Discussion
114(5)
Metals
119(22)
Introduction
119(2)
Predicting Brittle Fracture Using the TCD
121(12)
The effect of notch root radius
121(3)
The effect of constraint
124(5)
The role of microstructure
129(2)
Blunt notches and non-damaging notches
131(2)
Discussion
133(8)
Applicability of the TCD
133(2)
Other theoretical models
135(6)
Composites
141(22)
Introduction
142(1)
Early Work on the TCD: Whitney and Nuismer
143(3)
Does L Vary with Notch Size?
146(5)
Non-damaging Notches
151(3)
Practical Applications
154(1)
Other Theoretical Models
155(1)
Fracture of Bone
156(2)
Values of L for Composite Materials
158(1)
Concluding Remarks
158(5)
Fatigue
163(34)
Introduction
163(4)
Current methods for the fatigue design of components
164(1)
Crack closure
165(2)
Fatigue Limit Predictions
167(18)
Notches
168(4)
Size effects in notches
172(3)
Short cracks
175(5)
The effect of R ratio
180(2)
Discussion on fatigue limit prediction
182(3)
Finite Life Predictions
185(2)
Multiaxial and Variable Amplitude Loading
187(2)
Fatigue in Non-Metallic Materials
189(2)
Other Recent Theories
191(1)
Concluding Remarks
192(5)
Contact Problems
197(16)
Introduction
197(1)
Contact Situations
198(1)
Contact Stress Fields
198(3)
Fretting Fatigue
201(5)
The use of the TCD in fretting fatigue
205(1)
Other Contact-Related Failure Modes: Opportunities for the TCD
206(7)
Static indentation fracture
206(2)
Contact fatigue
208(1)
Mechanical joints
209(1)
Wear
209(1)
Machining
209(4)
Multiaxial Loading
213(22)
Introduction
213(1)
A Simplified View
214(1)
Material Response: The Factor fp
215(4)
Multiaxial fatigue criteria
217(1)
Scalar invariants
217(1)
Critical plane theories
218(1)
Cracked Bodies: The Factor fc
219(1)
Applying the TCD to Multiaxial Failure
220(1)
Multiaxial Brittle Fracture
220(2)
Multiaxial Fatigue
222(2)
Size Effects in Multiaxial Failure
224(6)
Fatigue
224(5)
Fracture of bone
229(1)
Out-of-Plane Shear
230(2)
Contact Problems
232(1)
Concluding Remarks
232(3)
Case Studies and Practical Aspects
235(26)
Introduction
235(1)
An Automotive Crankshaft
236(2)
A Vehicle Suspension Arm
238(2)
Failure Analysis of a Marine Component
240(3)
A Component Feature: Angled Holes
243(1)
Welded Joints
244(3)
Application of the TCD to fatigue in welded joints
245(2)
Other Joints
247(3)
Three-Dimensional Stress Concentrations
250(3)
Size Effects and Microscopic Components
253(3)
Simplified Models
256(1)
Mesh density
256(1)
Defeaturing
256(1)
Concluding Remarks
257(4)
Theoretical Aspects
261(16)
Introduction
261(1)
What Is the TCD?
262(1)
Why Does the TCD Work?
263(2)
The TCD and Other Fracture Theories
265(5)
Continuum mechanics theories
265(1)
Process zone models
266(1)
Mechanistic models
267(1)
Weibull models of cleavage fracture
268(1)
Models of fatigue crack initiation and growth
269(1)
Values of L
270(1)
The Value of σ0/σu
271(1)
The Range and Limitations of the TCD
272(2)
Concluding Remarks
274(3)
Author Index 277(4)
Subject Index 281
David Taylor, Associate Professor in Materials Engineering at Trinity College Dublin, has thirty years' experience in the field of material failure. His activities include fundamental research in the fields of fracture mechanics and biomechanics, and consultancy work on industrial design and forensic failure analysis.