Preface |
|
xiii | |
Nomenclature |
|
xvii | |
|
|
1 | (20) |
|
|
2 | (1) |
|
|
3 | (3) |
|
Failure at the atomic level |
|
|
3 | (1) |
|
Failure modes in engineering components |
|
|
3 | (3) |
|
|
6 | (2) |
|
Elastic Stress Fields for Notches and Cracks |
|
|
8 | (3) |
|
Stress fields at the microstructural level |
|
|
10 | (1) |
|
|
11 | (5) |
|
The effect of constraint on fracture toughness |
|
|
13 | (1) |
|
Non-linear behaviour: Plasticity and damage zones |
|
|
14 | (2) |
|
Elastic-plastic fracture mechanics |
|
|
16 | (1) |
|
The Failure of Notched Specimens |
|
|
16 | (1) |
|
|
17 | (1) |
|
Concluding Remarks: Limitations and Challenges in Failure Prediction |
|
|
18 | (3) |
|
The Theory of Critical Distances: Basics |
|
|
21 | (12) |
|
|
21 | (1) |
|
Example 1: Brittle Fracture in a Notched Specimen |
|
|
21 | (4) |
|
Necessary information: The stress-distance curve and material parameters |
|
|
23 | (1) |
|
|
24 | (1) |
|
Example 2: Fatigue Failure in an Engineering Component |
|
|
25 | (1) |
|
|
26 | (1) |
|
Finding Values for the Material Constants |
|
|
27 | (1) |
|
Some Other TCD Methods: The LM, AM and VM |
|
|
28 | (2) |
|
|
28 | (1) |
|
The area and volume methods |
|
|
29 | (1) |
|
Example 3: Predicting Size Effects |
|
|
30 | (1) |
|
|
31 | (2) |
|
The Theory of Critical Distances in Detail |
|
|
33 | (18) |
|
|
34 | (1) |
|
|
34 | (4) |
|
|
34 | (2) |
|
|
36 | (2) |
|
|
38 | (9) |
|
|
38 | (1) |
|
Introduced crack and imaginary crack models |
|
|
39 | (2) |
|
Linking the imaginary crack method to the PM and LM |
|
|
41 | (2) |
|
The finite crack extension method: `Finite fracture mechanics' |
|
|
43 | (2) |
|
Linking FFM to the other methods |
|
|
45 | (1) |
|
Combined stress and energy methods |
|
|
45 | (2) |
|
What is the TCD? Towards a General Definition |
|
|
47 | (4) |
|
Other Theories of Fracture |
|
|
51 | (12) |
|
|
52 | (1) |
|
|
52 | (2) |
|
|
54 | (1) |
|
|
55 | (1) |
|
Modified Fracture Mechanics |
|
|
55 | (2) |
|
Plastic-Zone and Process-Zone Theories |
|
|
57 | (2) |
|
|
59 | (1) |
|
|
60 | (3) |
|
|
63 | (30) |
|
|
63 | (1) |
|
|
64 | (20) |
|
The effect of small defects |
|
|
66 | (8) |
|
|
74 | (6) |
|
|
80 | (1) |
|
Discussion: other theories and observations |
|
|
81 | (3) |
|
|
84 | (2) |
|
|
86 | (1) |
|
|
87 | (2) |
|
|
89 | (4) |
|
|
93 | (26) |
|
|
93 | (2) |
|
|
95 | (12) |
|
|
95 | (4) |
|
|
99 | (7) |
|
|
106 | (1) |
|
|
107 | (2) |
|
Constraint and the Ductile-Brittle Transition |
|
|
109 | (4) |
|
Strain Rate and Temperature Effects |
|
|
113 | (1) |
|
|
114 | (5) |
|
|
119 | (22) |
|
|
119 | (2) |
|
Predicting Brittle Fracture Using the TCD |
|
|
121 | (12) |
|
The effect of notch root radius |
|
|
121 | (3) |
|
|
124 | (5) |
|
The role of microstructure |
|
|
129 | (2) |
|
Blunt notches and non-damaging notches |
|
|
131 | (2) |
|
|
133 | (8) |
|
|
133 | (2) |
|
|
135 | (6) |
|
|
141 | (22) |
|
|
142 | (1) |
|
Early Work on the TCD: Whitney and Nuismer |
|
|
143 | (3) |
|
Does L Vary with Notch Size? |
|
|
146 | (5) |
|
|
151 | (3) |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
156 | (2) |
|
Values of L for Composite Materials |
|
|
158 | (1) |
|
|
158 | (5) |
|
|
163 | (34) |
|
|
163 | (4) |
|
Current methods for the fatigue design of components |
|
|
164 | (1) |
|
|
165 | (2) |
|
Fatigue Limit Predictions |
|
|
167 | (18) |
|
|
168 | (4) |
|
|
172 | (3) |
|
|
175 | (5) |
|
|
180 | (2) |
|
Discussion on fatigue limit prediction |
|
|
182 | (3) |
|
|
185 | (2) |
|
Multiaxial and Variable Amplitude Loading |
|
|
187 | (2) |
|
Fatigue in Non-Metallic Materials |
|
|
189 | (2) |
|
|
191 | (1) |
|
|
192 | (5) |
|
|
197 | (16) |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
198 | (3) |
|
|
201 | (5) |
|
The use of the TCD in fretting fatigue |
|
|
205 | (1) |
|
Other Contact-Related Failure Modes: Opportunities for the TCD |
|
|
206 | (7) |
|
Static indentation fracture |
|
|
206 | (2) |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
209 | (4) |
|
|
213 | (22) |
|
|
213 | (1) |
|
|
214 | (1) |
|
Material Response: The Factor fp |
|
|
215 | (4) |
|
Multiaxial fatigue criteria |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
218 | (1) |
|
Cracked Bodies: The Factor fc |
|
|
219 | (1) |
|
Applying the TCD to Multiaxial Failure |
|
|
220 | (1) |
|
Multiaxial Brittle Fracture |
|
|
220 | (2) |
|
|
222 | (2) |
|
Size Effects in Multiaxial Failure |
|
|
224 | (6) |
|
|
224 | (5) |
|
|
229 | (1) |
|
|
230 | (2) |
|
|
232 | (1) |
|
|
232 | (3) |
|
Case Studies and Practical Aspects |
|
|
235 | (26) |
|
|
235 | (1) |
|
|
236 | (2) |
|
|
238 | (2) |
|
Failure Analysis of a Marine Component |
|
|
240 | (3) |
|
A Component Feature: Angled Holes |
|
|
243 | (1) |
|
|
244 | (3) |
|
Application of the TCD to fatigue in welded joints |
|
|
245 | (2) |
|
|
247 | (3) |
|
Three-Dimensional Stress Concentrations |
|
|
250 | (3) |
|
Size Effects and Microscopic Components |
|
|
253 | (3) |
|
|
256 | (1) |
|
|
256 | (1) |
|
|
256 | (1) |
|
|
257 | (4) |
|
|
261 | (16) |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
263 | (2) |
|
The TCD and Other Fracture Theories |
|
|
265 | (5) |
|
Continuum mechanics theories |
|
|
265 | (1) |
|
|
266 | (1) |
|
|
267 | (1) |
|
Weibull models of cleavage fracture |
|
|
268 | (1) |
|
Models of fatigue crack initiation and growth |
|
|
269 | (1) |
|
|
270 | (1) |
|
|
271 | (1) |
|
The Range and Limitations of the TCD |
|
|
272 | (2) |
|
|
274 | (3) |
Author Index |
|
277 | (4) |
Subject Index |
|
281 | |