Atnaujinkite slapukų nuostatas

El. knyga: Theory and Experiment in Gravitational Physics

(University of Florida)
  • Formatas: PDF+DRM
  • Išleidimo metai: 27-Sep-2018
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781108679824
  • Formatas: PDF+DRM
  • Išleidimo metai: 27-Sep-2018
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781108679824

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A review of experimental gravity providing a detailed survey of the testing of Einstein's theory of gravity and discussing the theoretical and mathematical framework needed to analyse gravitational theories and interpret experiments. Including a variety of alternative theories, it is a comprehensive reference for researchers and graduate students.

The 2015 centenary of the publication of Einstein's general theory of relativity, and the first detection of gravitational waves have focused renewed attention on the question of whether Einstein was right. This review of experimental gravity provides a detailed survey of the intensive testing of Einstein's theory of gravity, including tests in the emerging strong-field dynamical regime. It discusses the theoretical frameworks needed to analyze gravitational theories and interpret experiments. Completely revised and updated, this new edition features coverage of new alternative theories of gravity, a unified treatment of gravitational radiation, and the implications of the latest binary pulsar observations. It spans the earliest tests involving the Solar System to the latest tests using gravitational waves detected from merging black holes and neutron stars. It is a comprehensive reference for researchers and graduate students working in general relativity, cosmology, particle physics and astrophysics.

Recenzijos

'Throughout, the text is well written and the presentation is easy to follow The content is presented in full formal rigour, as appropriate for such a book. The text is in the style of a monograph, referenced to scientific publications throughout and supported by a number of black-and-white figures. It can be recommended to readers on the level of advanced undergraduates and above, either to accompany a course in gravitational physics, or for other studies of gravitation in the frame of general relativity with a special focus on possible and actually performed tests, their experimental implementation, and their implications for theory.' Manuel Vogel, Contemporary Physics 'As a leading researcher in this field for some 50 years and the author of many pedagogical and review papers the author is extraordinarily well-qualified to write such a book The writing is clear and readable, and there are extensive references to the original literature for those wanting to explore further this book is an invaluable survey and reference for those wishing to delve further.' Jonathan Thornburg, The Observatory

Daugiau informacijos

A comprehensive review of the testing and research conducted on Einstein's theory of general relativity.
Preface ix
Acknowledgments xi
1 Introduction
1(10)
2 The Einstein Equivalence Principle
11(50)
2.1 The Dicke Framework
12(4)
2.2 The Einstein Equivalence Principle
16(2)
2.3 Experimental Tests of the Einstein Equivalence Principle
18(16)
2.4 Schiff's Conjecture
34(7)
2.5 The THεμ Formalism
41(15)
2.6 The Standard Model Extension
56(2)
2.7 EEP, Particle Physics, and the Search for New Interactions
58(3)
3 Gravitation as a Geometric Phenomenon
61(17)
3.1 Universal Coupling
61(1)
3.2 Nongravitational Physics in Curved Spacetime
62(11)
3.3 Metric Theories of Gravity and the Strong Equivalence Principle
73(5)
4 The Parametrized Post-Newtonian Formalism
78(27)
4.1 The Post-Newtonian Approximation
79(5)
4.2 Building the PPN Formalism
84(6)
4.3 Lorentz Transformations and the PPN Metric
90(5)
4.4 Global Conservation Laws
95(6)
4.5 Other Post-Newtonian Gauges
101(4)
5 Metric Theories of Gravity and Their Post-Newtonian Limits
105(24)
5.1 Method of Calculation
106(4)
5.2 General Relativity
110(3)
5.3 Scalar-Tensor Theories
113(5)
5.4 Vector-Tensor Theories
118(3)
5.5 Tensor-Vector-Scalar (TeVeS) Theories
121(2)
5.6 Quadratic Gravity and Chern-Simons Theories
123(1)
5.7 Massive Gravity
124(1)
5.8 The Rise and Fall of Alternative Theories of Gravity
125(4)
6 Equations of Motion in the PPN Formalism
129(27)
6.1 Equations of Motion for Photons
129(3)
6.2 PPN Hydrodynamics
132(1)
6.3 Equations of Motion for Massive Bodies
133(8)
6.4 Two-Body Systems
141(5)
6.5 Semiconservative Theories and N-body Lagrangians
146(1)
6.6 The Locally Measured Gravitational Constant
147(4)
6.7 Equations of Motion for Spinning Bodies
151(5)
7 The Classical Tests
156(14)
7.1 Deflection of Light
157(7)
7.2 The Shapiro Time Delay
164(2)
7.3 The Perihelion Advance of Mercury
166(4)
8 Tests of the Strong Equivalence Principle
170(22)
8.1 The Nordtvedt Effect
170(8)
8.2 Preferred Frames and Locations: Orbits
178(4)
8.3 Preferred Frames and Locations: Structure of Massive Bodies
182(4)
8.4 Preferred Frames and Locations: Bounds on the PPN Parameters
186(3)
8.5 Constancy of Newton's Gravitational Constant
189(3)
9 Other Tests of Post-Newtonian Gravity
192(14)
9.1 Testing the Effects of Spin
192(11)
9.2 De Sitter Precession
203(1)
9.3 Tests of Post-Newtonian Conservation Laws
203(3)
10 Structure and Motion of Compact Objects
206(26)
10.1 Structure of Neutron Stars
207(6)
10.2 Structure of Black Holes
213(3)
10.3 The Motion of Compact Objects
216(16)
11 Gravitational Radiation
232(40)
11.1 The Problem of Motion and Radiation
232(4)
11.2 Gravitational Wave Detectors
236(2)
11.3 Speed of Gravitational Waves
238(3)
11.4 Polarization of Gravitational Waves
241(10)
11.5 Generation of Gravitational Waves
251(21)
12 Strong-Field and Dynamical Tests of Relativistic Gravity
272(36)
12.1 Binary Pulsars
272(19)
12.2 Inspiralling Compact Binaries and Gravitational Waves
291(10)
12.3 Exploring Spacetime near Compact Objects
301(5)
12.4 Cosmological Tests
306(2)
References 308(36)
Index 344
Clifford M. Will is Distinguished Professor of Physics at the University of Florida and Chercheur Associé at the institut d'Astrophysique de Paris. He is a member of the US National Academy of Sciences and a Fellow of the American Physical Society, the American Academy of Arts and Sciences, and the International Society on General Relativity and Gravitation.