Atnaujinkite slapukų nuostatas

Thermal Energy Storage with Phase Change Materials [Kietas viršelis]

Edited by , Edited by , Edited by
  • Formatas: Hardback, 440 pages, aukštis x plotis: 234x156 mm, weight: 762 g, 66 Tables, black and white; 251 Line drawings, black and white; 30 Halftones, black and white; 281 Illustrations, black and white
  • Išleidimo metai: 12-Aug-2021
  • Leidėjas: CRC Press
  • ISBN-10: 0367559412
  • ISBN-13: 9780367559410
  • Formatas: Hardback, 440 pages, aukštis x plotis: 234x156 mm, weight: 762 g, 66 Tables, black and white; 251 Line drawings, black and white; 30 Halftones, black and white; 281 Illustrations, black and white
  • Išleidimo metai: 12-Aug-2021
  • Leidėjas: CRC Press
  • ISBN-10: 0367559412
  • ISBN-13: 9780367559410
"This book focuses on latent heat storage, which is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, latent heat storage method provides much higher storage density, with a smaller difference between storing and releasing temperatures"--

This book focuses on latent heat storage, which is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, latent heat storage method provides much higher storage density, with a smaller difference between storing and releasing temperatures.

This book focuses on latent heat storage, which is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, the latent heat storage method provides much higher storage density with a smaller difference between storing and releasing temperatures.

Thermal Energy Storage with Phase Change Materials

is structured into four chapters that cover many aspects of thermal energy storage and their practical applications. Chapter 1 reviews selection, performance, and applications of phase change materials. Chapter 2 investigates mathematical analyses of phase change processes. Chapters 3 and 4 present passive and active applications for energy saving, peak load shifting, and price-based control heating using phase change materials.

These chapters explore the hot topic of energy saving in an overarching way, and so they are relevant to all courses. This book is an ideal research reference for students at the postgraduate level. It also serves as a useful reference for electrical, mechanical, and chemical engineers and students throughout their work.

FEATURES

  • Explains the technical principles of thermal energy storage, including materials and applications in different classifications
  • Provides fundamental calculations of heat transfer with phase change
  • Discusses the benefits and limitations of different types of phase change materials (PCM) in both micro- and macroencapsulations
  • Reviews the mechanisms and applications of available thermal energy storage systems
  • Introduces innovative solutions in hot and cold storage applications
Preface xvii
Editors xix
Contributors xxi
Chapter 1 Phase Change Material Selection and Performance 1(66)
Introduction
1(1)
References
2(2)
Chapter 1.1 A Review on Phase Change Energy Storage: Materials and Applications
4(20)
Mohammed Farid
Amar M. Khudhair
Siddique Ali K. Razack
Said Al-Hallaj
1.1.1 Introduction
4(1)
1.1.2 Phase Change Materials
5(6)
1.1.2.1 Classification and Properties of PCMs
5(3)
1.1.2.2 Phase Segregation and Subcooling Problems
8(1)
1.1.2.3 Stability of Thermal Properties under Extended Cycling
9(1)
1.1.2.4 Heat Transfer Enhancement Methods
10(1)
1.1.3 Encapsulation of PCMs
11(1)
1.1.4 Major Applications of PCMs
12(6)
1.1.4.1 Indirect Contact Latent Heat Storage of Solar Energy
12(2)
1.1.4.2 Thermal Storage with Direct Contact Heat Exchangers
14(1)
1.1.4.2.1 Solid-Solid Transition with Direct Contact Heat Transfer
14(1)
1.1.4.2.2 Direct Contact Heat Transfer between Hydrated Salts and an Immiscible Fluid
15(1)
1.1.4.3 Phase Change Thermal Storage for Shifting the Peak Heating Load
16(1)
1.1.4.4 Building Applications
17(1)
1.1.5 New PCM Technological Innovations
18(1)
1.1.6 Conclusions
18(1)
References
19(5)
Chapter 1.2 Fire Retardants for Phase Change Materials
24(13)
Pongphat Sittisart
Mohammed Farid
1.2.1 Introduction
24(2)
1.2.2 Experiments
26(1)
1.2.2.1 Materials
26(1)
1.2.2.2 Preparation of Fire-Retarded Form-Stable PCM
26(1)
1.2.2.3 Test for Fire Retardancy
27(1)
1.2.2.3.1 Vertical Burning Test
27(1)
1.2.2.3.2 Thermal Stability Test
27(1)
1.2.2.3.3 Cone Calorimeter Test
27(1)
1.2.2.3.4 DSC Test
27(1)
1.2.3 Results and Discussion
27(7)
1.2.3.1 Fire Retardancy and Fire Spread Using Vertical Burning Test
27(2)
1.2.3.2 Thermal Stability of Fire-Retarded Form-Stable PCM
29(3)
1.2.3.3 Flammability of Form-Stable PCM
32(1)
1.2.3.4 Latent Heat of Fire-Retarded Form-Stable PCM
33(1)
1.2.4 Conclusions
34(1)
Acknowledgement
34(1)
Glossary
34(1)
References
35(2)
Chapter 1.3 Long-Term Thermal Stability of Organic PCMs
37(14)
Sam Behzadi
Mohammed Farid
1.3.1 Introduction
37(1)
1.3.2 Materials and Method
38(3)
1.3.2.1 Experimental Procedure
38(1)
1.3.2.1.1 Oven Trials
38(1)
1.3.2.1.2 Naturally Exposed
39(1)
1.3.2.1.3 Cyclic Trials
41(1)
1.3.2.2 Analytical Method
41(1)
1.3.2.3 Materials
41(1)
1.3.3 Results and Discussion
41(7)
1.3.4 Conclusions
48(1)
Acknowledgements
48(1)
References
49(2)
Chapter 1.4 A Novel Calcium Chloride Hexahydrate-Based Deep Eutectic Solvent as a Phase Change Material
51(16)
K. Shahbaz
I.M. AlNashef
R.J.T. Lin
M.A. Hashim
F.S. Mjalli
Mohammed Farid
1.4.1 Introduction
51(3)
1.4.2 Experimental Details
54(2)
1.4.2.1 Chemicals
54(1)
1.4.2.2 Preparation of DESs
55(1)
1.4.2.3 Characterization of DESs
55(1)
1.4.3 Results and Discussion
56(6)
1.4.4 Conclusion
62(2)
Acknowledgments
64(1)
Appendix A. Supplementary Material
64(1)
References
64(3)
Chapter 2 Mathematical Analysis of Phase Change Processes 67(92)
Introduction
67(1)
References
68(1)
Chapter 2.1 A New Approach in the Calculation of Heat Transfer with Phase Change
69(14)
Mohammed Farid
2.1.1 Introduction
69(2)
2.1.2 Analysis
71(3)
2.1.3 Results
74(4)
2.1.4 Conclusion
78(2)
Nomenclature
80(1)
Subscript
81(1)
References
81(2)
Chapter 2.2 Effect of Natural Convection on the Process of Melting and Solidification of Paraffin Wax
83(21)
Mohammed Farid
Ahmed. K. Mohamed
2.2.1 Introduction
83(1)
2.2.2 Apparatus and Procedure
84(2)
2.2.3 Theory and Methods of Computation
86(4)
2.2.3.1 Neumann Analysis
86(2)
2.2.3.2 Melting from below with Natural Convection
88(2)
2.2.4 Results and Discussion
90(11)
2.2.4.1 Solidification from Below
90(4)
2.2.4.2 Melting with Convection
94(7)
2.2.5 Conclusion
101(1)
Acknowledgements
102(1)
Nomenclature
102(1)
Subscripts
102(1)
References
103(1)
Chapter 2.3 The Role of Natural Convection during Melting and Solidification of PCM in a Vertical Cylinder
104(19)
Mohammed Farid
Yongsik Kim
Takuya Honda
Atsushi Kanzawa
2.3.1 Introduction
104(2)
2.3.2 Experimental
106(1)
2.3.3 General Pattern of Melting and Solidification
107(2)
2.3.3.1 Melting
107(1)
2.3.3.2 Solidification
107(2)
2.3.4 The Analysis
109(3)
2.3.4.1 Evaluation of Natural Convection in the Melt
111(1)
2.3.5 Results and Discussion
112(7)
2.3.5.1 Evaluation of the Effective Thermal Conductivity
112(1)
2.3.5.2 Experimental Measurements and Model Predictions
113(6)
2.3.6 Conclusion
119(1)
Acknowledgements
120(1)
Nomenclature
121(1)
Subscript
121(1)
References
122(1)
Chapter 2.4 Thermal Performance of a Heat Storage Module Using PCMs with Different Melting Temperatures: Mathematical Modeling
123(14)
Mohammed Farid
Atsushi Kanzawa
2.4.1 Introduction
123(2)
2.4.2 Analysis
125(2)
2.4.3 Results of Simulation
127(5)
2.4.4 Conclusion
132(1)
Acknowledgement
133(1)
Nomenclature
133(1)
Greek Letters
134(1)
Subscript
135(1)
References
135(2)
Chapter 2.5 Performance of Direct Contact Latent Heat Storage Units with Two Hydrated Salts
137(22)
Mohammed Farid
Ali Nasser Khalaf
2.5.1 Introduction
137(1)
2.5.2 Measurements
138(2)
2.5.2.1 Measurements of Heat Losses and Bubble Size
140(1)
2.5.3 Theoretical Analysis
140(1)
2.5.4 Results
141(14)
2.5.4.1 Water System
141(1)
2.5.4.2 Prediction of the Performance of the Storage Unit Employing Hydrated Salts
142(4)
2.5.4.3 Volumetric Heat Transfer Coefficient
146(1)
2.5.4.4 Thermal Efficiency
147(1)
2.5.4.5 Power Input and Output from the System
148(7)
2.5.5 Conclusions
155(1)
Acknowledgements
155(1)
Nomenclature
155(1)
Greek
156(1)
Appendix 1: Physical Properties
156(1)
References
157(2)
Chapter 3 Energy Saving, Peak Load Shifting and Price-Based Control Heating: Passive Applications 159(170)
Introduction
159(2)
References
161(1)
Chapter 3.1 A Review on Energy Conservation in Building Applications with Thermal Storage by Latent Heat Using Phase Change Materials
162(14)
Amar M. Khudhair
Mohammed Farid
3.1.1 Introduction
162(1)
3.1.2 PCM Developments
163(1)
3.1.3 Phase-Change Thermal Storage for Peak Load Shifting
163(1)
3.1.4 Phase Change Material Encapsulation in Structures
164(6)
3.1.4.1 Wallboards Impregnated with PCMs
165(3)
3.1.4.2 Concrete Blocks Impregnating with PCMs
168(1)
3.1.4.3 Underfloor Heating with Latent Heat Storage
169(1)
3.1.5 Micro- and Macroencapsulation Methods
170(1)
3.1.6 Fire Retardation of PCM-Treated Construction Materials
171(2)
3.1.7 Conclusions
173(1)
References
173(3)
Chapter 3.2 Impact of Energy Storage in Buildings on Electricity Demand Side Management
176(22)
Waqar A. Qureshi
Nirmal-Kumar C. Nair
Mohammed M. Farid
3.2.1 Introduction
176(2)
3.2.2 Electrical DSM and New Zealand Context
178(2)
3.2.3 Research Setup
180(6)
3.2.4 Results and Analysis
186(9)
3.2.4.1 DSM Opportunity through PCM for NZEM
186(1)
3.2.4.1.1 Load Shifting and Price Efficiency
188(1)
3.2.4.1.2 Energy Conservation
191(1)
3.2.4.2 Energy Conservation Analysis for Multiple Days
191(4)
3.2.5 Conclusions
195(1)
Acknowledgements
196(1)
References
196(2)
Chapter 3.3 Experimental Validation of a Methodology to Assess PCM Effectiveness in Cooling Building Envelopes Passively
198(26)
Albert Castell
Mohammed Farid
3.3.1 Introduction
198(2)
3.3.2 Indicators for the PCM Evaluation
200(3)
3.3.2.1 Intensity of Thermal Discomfort for Overheating (ITDover)
201(1)
3.3.2.2 Frequency of Thermal Comfort (FTCover)
201(1)
3.3.2.3 Frequency of Activation FA
202(1)
3.3.2.4 PCM Storage Efficiency
202(1)
3.3.3 Proposed Modifications to the Indicators
203(2)
3.3.3.1 Full-Period ITD
204(1)
3.3.3.2 Full-Period Frequency of Thermal Comfort
205(1)
3.3.4 Experimental Setup
205(4)
3.3.4.1 Lightweight Constructions
205(2)
3.3.4.2 Massive Buildings-Concrete
207(1)
3.3.4.3 Massive Buildings-Brick
208(1)
3.3.5 Results and Discussion
209(11)
3.3.6 Conclusions
220(1)
Acknowledgments
221(1)
Nomenclature
221(1)
Subindex
221(1)
References
222(2)
Chapter 3.4 Peak Load Shifting with Energy Storage and Price-Based Control System
224(17)
Reza Barzin
John J.J. Chen
Brent R. Young
Mohammed Farid
3.4.1 Introduction
224(1)
3.4.2 Methodology
225(5)
3.4.2.1 Price-Based Method
226(1)
3.4.2.2 The Experimental Setup
226(1)
3.4.2.2.1 Domestic Freezer
226(1)
3.4.2.2.2 Data Acquisition and Control in the Freezer
226(1)
3.4.2.2.3 Experimental Hut
228(1)
3.4.2.2.4 Data Acquisition and Control in the Hut Experiment
228(2)
3.4.3 Results and Discussion
230(8)
3.4.3.1 Freezer Experiment
230(1)
3.4.3.2 Hut Experiment
231(1)
3.4.3.2.1 Space Heating Using Price-Based Control Method
232(1)
3.4.3.2.2 Power Consumption
234(4)
3.4.4 Conclusions
238(1)
Acknowledgements
238(1)
Abbreviations
239(1)
References
239(2)
Chapter 3.5 Application of Weather Forecast in Conjunction with Price-Based Method for PCM Solar Passive Buildings - An Experimental Study
241(18)
Reza Barzin
John J.J. Chen
Brent R. Young
Mohammed Farid
3.5.1 Introduction
241(3)
3.5.1.1 Application of PCM in Solar Passive Buildings
242(1)
3.5.1.2 Application of Weather Forecasts in Energy Management in Buildings with PCM
243(1)
3.5.2 Methodology
244(5)
3.5.2.1 Experimental Setup
244(1)
3.5.2.2 Thermal Energy Storage
245(1)
3.5.2.3 Data Acquisition
246(1)
3.5.2.4 Control System
246(3)
3.5.3 Results and Discussion
249(6)
3.5.4 Conclusion
255(1)
Acknowledgements
256(1)
Abbreviations
256(1)
References
257(2)
Chapter 3.6 Application of PCM Energy Storage in Combination with Night Ventilation for Space Cooling
259(18)
Reza Barzin
John J.J. Chen
Brent R. Young
Mohammed Farid
3.6.1 Introduction
259(3)
3.6.2 Methodology
262(4)
3.6.2.1 Experimental Setup
262(1)
3.6.2.2 PCM Selection and Impregnation
262(1)
3.6.2.3 Control System
263(3)
3.6.2.4 Night Ventilation
266(1)
3.6.3 Results
266(7)
3.6.3.1 Application of AC Unit
266(4)
3.6.3.2 Application of Night Ventilation in Combination with AC in Hut 2
270(3)
3.6.4 Conclusion
273(1)
Acknowledgements
274(1)
References
274(3)
Chapter 3.7 Application of PCM Underfloor Heating in Combination with PCM Wallboards for Space Heating Using Price-Based Control System
277(17)
Reza Barzin
John J.J. Chen
Brent R. Young
Mohammed Farid
3.7.1 Introduction
277(2)
3.7.2 Methodology
279(3)
3.7.2.1 Price-Based Control
279(1)
3.7.2.2 Experimental Setup
279(1)
3.7.2.2.1 Underfloor Heating System
279(1)
3.7.2.2.2 PCM Underfloor Heating System in Combination with PCM Wallboard
280(1)
3.7.2.3 Data Acquisition and Control
281(1)
3.7.3 Results and Discussion
282(9)
3.7.3.1 Underfloor Heating System
283(2)
3.7.3.2 Underfloor Heating in Combination with PCM Wallboards
285(5)
3.7.3.3 Further Comments and Discussions
290(1)
3.7.4 Conclusions
291(1)
Acknowledgement
291(1)
Abbreviations
291(1)
References
291(3)
Chapter 3.8 Analysis of Energy Requirements versus Comfort Levels for the Integration of Phase Change Materials in Buildings
294(16)
Martin Vautherot
Francois Marechal
Mohammed Farid
3.8.1 Introduction
294(1)
3.8.2 Methodology of the Investigation for a Typical House Using Computer Simulation
295(6)
3.8.2.1 Development of a Building Simulation Model
295(1)
3.8.2.2 Modelling of a Typical House
296(1)
3.8.2.2.1 Geometry and Materials
296(1)
3.8.2.2.2 HVAC
296(1)
3.8.2.2.3 Occupancy
297(1)
3.8.2.3 Inputs in the Model
297(1)
3.8.2.3.1 Heating Set Point
299(1)
3.8.2.3.2 Types of Gypsum Boards
299(1)
3.8.2.4 Outputs of the Model
299(1)
3.8.2.4.1 Comfort Level
300(1)
3.8.2.4.2 Energy Requirements
301(1)
3.8.3 Results and Discussion
301(7)
3.8.4 Conclusion
308(1)
Acknowledgments
308(1)
References
308(2)
Chapter 3.9 Benefits of PCM Underfloor Heating with PCM Wallboards for Space Heating in Winter
310(19)
Paul Devaux
Mohammed Farid
3.9.1 Introduction
310(1)
3.9.2 Methodology
311(4)
3.9.2.1 The Inputs to the Model
312(1)
3.9.2.1.1 The Hut Construction
312(1)
3.9.2.1.2 Run Period and Weather Data
314(1)
3.9.2.1.3 The Underfloor Heating System & Schedule
314(1)
3.9.2.2 The Outputs of the Model
315(1)
3.9.3 Computer Validation
315(3)
3.9.3.1 The Run Period
315(1)
3.9.3.2 Comparison of the Results
316(2)
3.9.4 Results and Discussion
318(7)
3.9.4.1 Peak Period Position Analysis
319(1)
3.9.4.1.1 The Morning Peak Period
320(1)
3.9.4.1.2 The Evening Peak Period
320(1)
3.9.4.2 Detailed Results - Graphs
320(2)
3.9.4.3 Detailed Results - Table
322(3)
3.9.5 Conclusions
325(1)
Acknowledgments
325(1)
References
326(3)
Chapter 4 Energy-Saving, Peak Load Shifting and Price-Based Control Heating and Cooling: Active Applications 329(102)
References
330(1)
Chapter 4.1 Application of an Active PCM Storage System into a Building for Heating/Cooling Load Reduction
331(28)
Gohar Gholamibozanjani
Mohammed Farid
4.1.1 Introduction
331(1)
4.1.2 Methodology
332(9)
4.1.2.1 Experimental Setup
332(1)
4.1.2.1.1 Air-PCM Heat Storage Units
332(1)
4.1.2.1.2 Solar Air Heater
335(1)
4.1.2.1.3 Experimental Huts
335(2)
4.1.2.2 Measurement Instrumentation
337(1)
4.1.2.3 Data Acquisition
337(2)
4.1.2.4 Control System
339(1)
4.1.2.4.1 Space Heating
339(1)
4.1.2.4.2 Space Cooling
341(1)
4.1.3 Results and Discussion
341(13)
4.1.3.1 Space Heating
341(1)
4.1.3.1.1 Application of Air-Based PCM System for Heating in Combination with Solar Heater
341(1)
4.1.3.1.2 Application of Air-Based PCM in Combination with Solar and Electric Heaters
342(6)
4.1.3.2 Space Cooling
348(5)
4.1.3.3 Further Comments and Discussion
353(1)
4.1.4 Conclusions
354(1)
Author Statement
355(1)
Declaration of Competing Interest
355(1)
Acknowledgment
355(1)
Nomenclature
355(1)
References
356(3)
Chapter 4.2 Peak Load Shifting Using a Price-Based Control in PCM- Enhanced Buildings
359(21)
Gohar Gholamibozanjani
Mohammed Farid
4.2.1 Introduction
359(2)
4.2.2 Methodology
361(7)
4.2.2.1 Experimental Setup
361(1)
4.2.2.1.1 PCM Storage Unit
361(1)
4.2.2.1.2 Experimental Huts
362(1)
4.2.2.2 Measurement Instrumentation
363(1)
4.2.2.3 Data Acquisition
364(1)
4.2.2.4 Control System
365(3)
4.2.3 Results and Discussion
368(8)
4.2.3.1 Heating Peak Load Shifting
368(1)
4.2.3.1.1 Energy-Savings
369(1)
4.2.3.1.2 Cost Savings
371(1)
4.2.3.2 Cooling Peak Load Shifting
372(3)
4.2.3.3 Further Comments and Discussion
375(1)
4.2.4 Conclusion and Future Studies
376(1)
Declaration of Competing Interest
377(1)
Acknowledgment
377(1)
Nomenclature
377(1)
References
377(3)
Chapter 4.3 Model Predictive Control Strategy Applied to Different Types of Building for Space Heating
380(30)
Gohar Gholamibozanjani
Joan Tarragona
Alvaro de Gracia
Cesar Fernandez
Luisa F. Cabeza
Mohammed Farid
4.3.1 Introduction
380(3)
4.3.2 Methodology
383(9)
4.3.2.1 Description of the System
383(1)
4.3.2.1.1 General Overview
383(1)
4.3.2.1.2 Solar Air Collector
384(1)
4.3.2.1.3 Heat Exchanger
385(1)
4.3.2.1.4 Backup Heater
387(1)
4.3.2.2 Heating Demand Simulation
388(1)
4.3.2.3 Numerical Optimization
389(1)
4.3.2.4 MPC Strategy
389(3)
4.3.3 Results and Discussion
392(12)
4.3.3.1 Effect of Receding Horizon
392(5)
4.3.3.2 Effect of Decision Time Step
397(1)
4.3.3.3 Effect of Mass Capacity of PCM
397(3)
4.3.3.4 MPC Performance in Different Buildings
400(4)
4.3.4 Conclusions
404(1)
Acknowledgements
404(1)
Nomenclature
405(1)
Greek symbols
405(1)
Subscripts
405(1)
References
406(4)
Chapter 4.4 A Comparison between Passive and Active PCM Systems Applied to Buildings
410(21)
Gohar Gholamibozanjani
Mohammed Farid
4.4.1 Introduction
410(2)
4.4.2 Methodology
412(5)
4.4.2.1 Experimental Setup
412(3)
4.4.2.2 Data Acquisition
415(1)
4.4.2.3 Control System
415(2)
4.4.3 Results and Discussion
417(9)
4.4.3.1 Comparison of PTSS and ATSS
417(1)
4.4.3.1.1 Space Cooling
417(1)
4.4.3.1.2 Space Heating
420(1)
4.4.3.1.3 Peak Load Shifting Using PTSS and ATSS
422(3)
4.4.3.2 Further Comparison of PTSS and ATSS
425(1)
4.4.4 Conclusion
426(1)
Declaration of Competing Interest
426(1)
Acknowledgment
426(1)
Nomenclature
427(1)
References
427(4)
Index 431
Professor Mohammed Mehdi Farid is a full professor (Personal Chair) at the University of Auckland, New Zealand.

Dr Amar Auckaili is a professional teaching fellow at the University of Auckland, New Zealand.

Dr. Gohar Gholambozanjani is a research assistant at the University of Auckland, New Zealand.