Atnaujinkite slapukų nuostatas

El. knyga: Thermal Properties of Solids at Room and Cryogenic Temperatures

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The minimum temperature in the natural universe is 2.7 K. Laboratory refrigerators can reach temperatures in the microkelvin range. Modern industrial refrigerators cool foods at 200 K, whereas space mission payloads must be capable of working at temperatures as low as 20 K. Superconducting magnets used for NMR work at 4.2 K.
Hence the properties of materials must be accurately known also at cryogenic temperatures.

This book provides a guide for engineers, physicists, chemists, technicians who wish to approach the field of low-temperature material properties. The focus is on the thermal properties and a large spectrum of experimental cases is reported. The book presents updated tables of low-temperature data on materials and a thorough bibliography supplements any further research.
Key Features include:

° Detailed technical description of experiments
° Description of the newest cryogenic apparatus
° Offers data on cryogenic properties of the latest new materials
° Current reference review

Part I Heat Capacity
1 Heat Capacity
3(36)
1.1 Introduction
3(3)
1.2 Lattice Specific Heat
6(3)
1.3 Electronic Specific Heat
9(2)
1.4 Electronic Specific Heat in Superconducting Materials
11(3)
1.5 Specific Heat Contributions from Transitions and Defects
14(3)
1.6 Magnetic Specific Heat
17(11)
1.6.1 Magnetic Order and Specific Heat
17(3)
1.6.2 The Schottky Anomaly
20(4)
1.6.3 Materials Used for Magnetic Refrigeration
24(1)
1.6.4 Heat Capacity of Regenerators for Cryocoolers
25(3)
1.7 Specific Heat Due to the Amorphous State
28(4)
1.8 Conclusion
32(7)
References
32(7)
2 How to Measure Heat Capacity at Low Temperatures
39(30)
2.1 Introduction
39(2)
2.2 Calorimeters
41(3)
2.3 Heat Pulse Calorimetry
44(4)
2.3.1 Example 1: Heat Pulse Calorimeter for a Small Sample at Temperatures Below 3 K
44(3)
2.3.2 Example 2: Heat Pulse Calorimetry for the Measurement of the Specific Heat of Liquid 4He Near its Superfluid Transition
47(1)
2.4 Relaxation Calorimetry
48(4)
2.4.1 Example: Measurement of Specific Heat of Heavily Doped (NTD) Ge
50(2)
2.5 Dual Slope Method
52(3)
2.6 AC Calorimetry
55(2)
2.7 Differential Scanning Calorimetry
57(2)
2.8 Other Methods
59(1)
2.9 Industrial Calorimeters
60(1)
2.10 Small Sample Calorimetry
61(8)
References
63(6)
3 Data of Specific Heat
69(12)
3.1 Presentation of DATA of Specific Heat
69(1)
3.2 Very-Low Temperature DATA (Below About 4 K)
69(3)
3.2.1 Metals and Alloys
69(1)
3.2.2 Dielectrics
70(2)
3.3 Low-Temperature Specific Heat DATA (Approximately 4-300 K)
72(9)
3.3.1 Metals and Alloys
72(1)
3.3.2 Dielectrics
72(5)
References
77(4)
Part II Thermal Expansion
4 Thermal Expansion
81(12)
4.1 Introduction
81(1)
4.2 Thermal Expansion Theory
82(4)
4.3 Negative Thermal Expansion
86(7)
4.3.1 Application of NTE
86(2)
References
88(5)
5 How to Measure the Thermal Expansion Coefficient at Low Temperatures
93(28)
5.1 Capacitive Dilatometers
94(8)
5.1.1 Principles of Capacitive Techniques
94(2)
5.1.2 Examples
96(6)
5.2 Interferometric Dilatometers
102(15)
5.2.1 Principles of Interferometric Dilatometry
103(3)
5.2.2 Homodyne Dilatometer: Example
106(1)
5.2.3 Heterodyne Dilatometer with Cryogenic Liquids: Examples
107(4)
5.2.4 Heterodyne Interferometric Dilatometer: Example
111(5)
5.2.5 Heterodyne Dilatometer with Mechanical Coolers: Examples
116(1)
5.3 Very Low Temperature Thermal Expansion
117(4)
References
118(3)
6 Data of Thermal Expansion
121(10)
References
127(4)
Part III Thermal Conductivity
7 Electrical and Thermal Conductivity
131(38)
7.1 Electrical Conductivity
131(8)
7.1.1 Relation Between Thermal and Electrical Conductivity
131(3)
7.1.2 Electrical Resistivity of Metals
134(3)
7.1.3 Electrical Conductivity of Semiconductors
137(2)
7.2 Magnetic and Dielectric Losses
139(2)
7.2.1 Losses in Dielectric Materials
139(2)
7.3 Thermal Conductivity
141(28)
7.3.1 Introduction
141(4)
7.3.2 Lattice Thermal Conductivity
145(1)
7.3.3 Thermal Conductivity of Dielectrics
146(6)
7.3.4 Thermal Conductivity of Nanocomposites
152(3)
7.3.5 Composite Materials
155(7)
References
162(7)
8 How to Measure Thermal Conductivity
169(26)
8.1 Introduction
169(1)
8.2 Steady State Techniques
170(4)
8.2.1 Longitudinal Flux Method
171(2)
8.2.2 Radial Flux Method or Cylinder Method
173(1)
8.3 Transient Methods
174(5)
8.3.1 The 3Ω Method
174(3)
8.3.2 Pulse Power Method
177(2)
8.4 Thermal Diffusivity Measurements
179(2)
8.4.1 Laser Flash Method
179(1)
8.4.2 Temperature Wave Method
180(1)
8.5 Examples of Measurements of Electrical and Thermal Conductivity
181(14)
8.5.1 Measurement of Electrical Resistivity of Heavily Doped NTD
31(150)
Germanium at Very Low Temperatures, and Calculation of Electron-phonon Decoupling
181(4)
8.5.2 Measurement of the Thermal Conductivity of Torlon in the 0.08--300 K Temperature Range
185(5)
References
190(5)
9 Data of Thermal Conductivity
195(18)
9.1 Very Low Temperature Data
195(1)
9.2 Low Temperature Data
195(18)
9.3 Crystalline Materials
213(1)
References 213
Guglielmo Ventura was professor of Cryogenics and Vacuum Technologies at the University of Florence until he retired in 2013. He is now a cryogenic consultant for INFN, Rome, in the European project LUCIFER. He has collaborated in space, rocket and balloon born experiments (measurement of the Cosmic Background Radiation or CBR) and is now involved in CUORE (Cryogenic Underground Observatory for Rare Events) underground experiments.

Mauro Perfetti was born in 1988 in La Spezia (Italy). After his graduation with first class of honors in 2007, he obtained his bachelors degree in 2010 and his masters degree in 2012 in Chemistry, both Summa com Laude. In 2012 he won a position as PhD student in Chemical Sciences in the University of Florence with the supervision of Professor Roberta Sessoli. Despite his young age, he is co-author of many papers published by prestigious journals. His research line, inserted in the field of Molecular Magnetism, is mainly focused on the understanding of the low temperature magnetic behaviour of anisotropic lanthanide-based Single Molecule Magnets and on the electrical and magnetic characterization of new hybrid materials composed by Single Molecule Magnets grafted on Nanoparticles.