Atnaujinkite slapukų nuostatas

El. knyga: Thermoacoustic Combustion Instability Control: Engineering Applications and Computer Codes

(Professor and Director, Department of Mechanical Engineering, University of Canterbury, New Zealand)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 13-Feb-2023
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780323899185
  • Formatas: EPUB+DRM
  • Išleidimo metai: 13-Feb-2023
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780323899185

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Thermoacoustic Combustion Instability Control: Engineering Applications and Computer Codes provides a unique opportunity for researchers, students and engineers to access recent developments from technical, theoretical and engineering perspectives. The book is a compendium of the most recent advances in theoretical and computational modeling and the thermoacoustic instability phenomena associated with multi-dimensional computing methods and recent developments in signal-processing techniques. These include, but are not restricted to a real-time observer, proper orthogonal decomposition (POD), dynamic mode decomposition, Galerkin expansion, empirical mode decomposition, the Lattice Boltzmann method, and associated numerical and analytical approaches.

The fundamental physics of thermoacoustic instability occurs in both macro- and micro-scale combustors. Practical methods for alleviating common problems are presented in the book with an analytical approach to arm readers with the tools they need to apply in their own industrial or research setting. Readers will benefit from practicing the worked examples and the training provided on computer coding for combustion technology to achieve useful results and simulations that advance their knowledge and research.

  • Focuses on applications of theoretical and numerical modes with computer codes relevant to combustion technology
  • Includes the most recent modeling and analytical developments motivated by empirical experimental observations in a highly visual way
  • Provides self-contained chapters that include a comprehensive, introductory section that ensures any readers new to this topic are equipped with required technical terms
Preface xvii
Acknowledgments xix
Chapter 1 Introduction of self-sustained thermoacoustic instability
1(112)
1.1 Introduction of thermoacoustic instability phenomena
1(3)
1.2 Basic physics of combustion instabilities and review of Rayleigh criterion
4(2)
1.3 Generation mechanisms of combustion instability
6(6)
1.3.1 Mathematical description
6(4)
1.3.2 Physical description
10(2)
1.4 Stability prediction of longitudinal and circumferential eigenmodes in choked thermoacoustic combustor
12(18)
1.4.1 Physical configuration and geometry of the chocked combustor
13(2)
1.4.2 Description of the analytical modeled combustor
15(3)
1.4.3 Linearized Euler equation method
18(4)
1.4.4 Longitudinal and circumferential eigenmodes stability estimation
22(7)
1.4.5 Concluding remarks
29(1)
1.4.6 Appendix
29(1)
1.5 Mean flow effect on entropy generation in a thermoacoustic combustor
30(13)
1.5.1 Description of the modeled combustor and governing equations
31(2)
1.5.2 Transfer function analysis of entropy-acoustics-heat coupling
33(2)
1.5.3 Low-order thermo-acoustic model
35(1)
1.5.4 Effects of n and t
36(6)
1.5.5 Concluding remarks
42(1)
1.6 Thermodynamics-acoustics coupling studies on self-excited combustion oscillations maximum growth rate
43(16)
1.6.1 Generation mechanism of combustion-excited acoustics
43(7)
1.6.2 Stability behaviors and maximum growth rate prediction
50(5)
1.6.3 Experimental studies
55(4)
1.6.4 Concluding remarks
59(1)
1.7 Heat flux and acoustic power in a convection-driven T-shaped thermoacoustic combustor
59(19)
1.7.1 Numerical model of a T-shaped thermoacoustic combustor
60(3)
1.7.2 Effects of inlet flow velocity, heat source location and heat flux
63(8)
1.7.3 Experimental studies
71(5)
1.7.4 Concluding remarks
76(2)
1.8 Effects of time delay, acoustic losses, combustion-flow interaction index on stability behaviors of a Rijke-type combustor
78(10)
1.8.1 Description of the thermoacoustic model
79(2)
1.8.2 Stability analysis of the time-delayed thermoacoustic model
81(2)
1.8.3 Effects of time delay, acoustic losses, and interaction index
83(5)
1.8.4 Concluding remarks
88(1)
1.9 Identifying chemical kinetics contribution to stability behaviors
88(12)
1.9.1 Description of the chemical reaction model
89(1)
1.9.2 Identified states distribution in thermodynamics P-T phase diagrams
90(3)
1.9.3 Chemical kinetics analysis of unsteady heat release
93(7)
1.9.4 Concluding remarks
100(1)
1.10 Concluding remarks and future work
100(13)
References
101(12)
Chapter 2 Nonlinear dynamics of thermoacoustic combustors
113(90)
2.1 Introduction
113(1)
2.2 Bifurcation study of a Rijke-type thermoacoustic combustor
114(14)
2.2.1 Modeling of unsteady heat release and bifurcation analysis
115(4)
2.2.2 Nonlinear dynamics behaviors of the standing-wave combustor
119(4)
2.2.3 Experimental observation of bifurcation behaviors
123(4)
2.2.4 Concluding remarks
127(1)
2.3 Effects of background noises on nonlinear dynamics of a modeled Rijke-type combustor
128(15)
2.3.1 Introduction
128(1)
2.3.2 Description of a nonlinear thermoacoustic model
129(5)
2.3.3 Effects of each type of background noises
134(4)
2.3.4 Effects of combined background noises
138(4)
2.3.5 Concluding remarks
142(1)
2.4 Coherence resonance and stochastic bifurcation behaviors of Rijke-type combustor
143(16)
2.4.1 Theoretical modeling
144(4)
2.4.2 Boundary effects: closed-open and open-open
148(8)
2.4.3 Experimental studies
156(1)
2.4.4 Concluding remarks
157(2)
2.5 Stochastic properties of a thermoacoustic combustor driven by colored noise
159(13)
2.5.1 Modeling of premixed thermoacoustic combustor driven by turbulence-induced color noise
160(4)
2.5.2 Effect of the colored noise
164(7)
2.5.3 Concluding remarks
171(1)
2.6 Characterizing nonlinear dynamics features in swirling thermoacoustic combustor
172(18)
2.6.1 Description of the experimental test
173(3)
2.6.2 Data-processing methodologies
176(2)
2.6.3 Effect of equivalence ratio swirling number and mass flow rate
178(9)
2.6.4 Concluding remarks
187(1)
2.6.5 Appendix A
188(2)
2.7 Concluding remarks and future work
190(13)
Nomenclature
191(1)
References
192(11)
Chapter 3 Transient growth and non-orthogonality of thermoacoustic eigenmodes
203(102)
3.1 Introduction
203(1)
3.2 Transient growth of flow disturbances in triggering Rijke-type thermoacoustic combustor
204(23)
3.2.1 Description of the numerical modeled Rijke-type combustor
204(8)
3.2.2 Effect of mean temperature gradient
212(4)
3.2.3 Orthogonality analysis of the combustion-excited modes
216(3)
3.2.4 Transient growth analysis
219(8)
3.3 Effect of choked outlet on transient energy growth analysis
227(17)
3.3.1 Introduction
227(1)
3.3.2 Geometry and physical configurations of the choked combustor
228(2)
3.3.3 Transient growth of flow disturbances
230(2)
3.3.4 Modal analysis methods
232(3)
3.3.5 Effect of open or choked outlet
235(8)
3.3.6 Concluding remarks
243(1)
3.4 Effect of entropy waves on transient energy growth in a choked thermoacoustic system
244(26)
3.4.1 Introduction
244(2)
3.4.2 Modal analysis
246(8)
3.4.3 Non-orthogonality analysis of acoustic and entropy modes with mean flow
254(7)
3.4.4 Transient energy growth analysis
261(8)
3.4.5 Concluding remarks
269(1)
3.5 Transient energy growth analysis of a combustor with distributed mean heat input
270(27)
3.5.1 Introduction
270(1)
3.5.2 Description of the thermoacoustic system with distributed mean heat input
270(5)
3.5.3 Modal analysis of such distributed heat source system
275(3)
3.5.4 Entropy waves generation by acoustic disturbances impinging on distributed heat source
278(2)
3.5.5 Non-orthogonality analysis of entropy eigenmodes
280(4)
3.5.6 Transient energy growth analysis
284(8)
3.5.7 Concluding remarks
292(2)
3.5.8 Appendix A
294(1)
3.5.9 Appendix B
294(1)
3.5.10 Appendix C
295(2)
3.5.11 Appendix D
297(1)
3.6 Concluding remarks and future work
297(8)
Nomenclature
298(1)
References
299(6)
Chapter 4 Intrinsic thermoacoustic instability
305(60)
4.1 Introduction
305(2)
4.2 Entropy-involved energy measure study of intrinsic combustion instability
307(13)
4.2.1 Theoretical modeling of a non-uniform combustor
307(3)
4.2.2 Predicting intrinsic eigenfrequencies and critical gain
310(2)
4.2.3 Case studies of turbulent and laminar flames
312(6)
4.2.4 Concluding remarks
318(1)
4.2.5 Appendix: order analysis
319(1)
4.3 Intrinsic thermoacoustic instability of a premixed combustor with a moving flame front
320(16)
4.3.1 Introduction
320(1)
4.3.2 Theoretical modeling of the premixed thermoacoustic system
320(3)
4.3.3 Entropy disturbances generated in the non-uniform combustor
323(1)
4.3.4 Thermoacoustic network model
324(2)
4.3.5 Discussion on the intrinsic thermoacoustic criterion
326(2)
4.3.6 Comparison with experimental results
328(8)
4.3.7 Concluding remarks
336(1)
4.4 Acoustics-vorticity-entropy interaction contribution to intrinsic axisymmetric thermoacoustic instability
336(18)
4.4.1 Introduction
336(1)
4.4.2 Azimuthal perturbation modeling affected by unsteady heat release
337(7)
4.4.3 Thermoacoustic dynamics in plenum-swirler-chamber configuration
344(9)
4.4.4 Concluding remarks
353(1)
4.5 Concluding remarks and future work
354(11)
Appendix A Governing equations of the vorticity-entropy-acoustics coupling
354(3)
Appendix B Matrix formulation
357(1)
Nomenclature
358(1)
References
359(6)
Chapter 5 Premixed and nonpremixed flame-acoustics dynamic interaction
365(78)
5.1 Introduction
365(2)
5.2 Hydrogen-fueled diffusion flame in a longitudinal combustor
367(21)
5.2.1 Description of the numerical model
367(4)
5.2.2 Validation of the numerical model
371(2)
5.2.3 Entropy generation and thermodynamic second law efficiency
373(13)
5.2.4 Flame transfer function (FTF) analysis
386(2)
5.2.5 Concluding remarks
388(1)
5.3 Acoustically-excited turbulent premixed flames
388(13)
5.3.1 Introduction
388(1)
5.3.2 Experimental setup
389(2)
5.3.3 Flame structures
391(4)
5.3.4 Planar laser-induced fluorescence imaging
395(4)
5.3.5 Flame curvature
399(2)
5.3.6 Concluding remarks
401(1)
5.4 Blow-off characteristics of premixed methane/air flame under acoustic excitation
401(18)
5.4.1 Introduction
401(1)
5.4.2 Experimental rig with laser diagnostics packaged applied
402(2)
5.4.3 Premixed flame structure during the blow-off process
404(7)
5.4.4 Flow and acoustic velocity measurements
411(4)
5.4.5 Numerical investigation of the acoustic resonance nature of the combustor
415(3)
5.4.6 Concluding remarks
418(1)
5.5 Soot suppression from acoustically forcing acetylene diffusion flames
419(13)
5.5.1 Introduction
419(1)
5.5.2 Description of experimental setup
420(3)
5.5.3 Effects of acoustic forcing amplitude and frequency and soot suppression mechanism
423(9)
5.5.4 Concluding remarks
432(1)
5.6 Concluding remarks and future work
432(11)
References
433(10)
Chapter 6 Active control of thermoacoustic instability
443(70)
6.1 Introduction
443(7)
6.1.1 Basic physics of combustion instabilities
443(2)
6.1.2 Generating mechanisms
445(2)
6.1.3 Damping mechanisms
447(2)
6.1.4 Nonlinear effects
449(1)
6.2 Control approaches
450(2)
6.3 Open-loop control strategies
452(3)
6.4 Closed-loop control strategies
455(9)
6.4.1 A simplified open-ended thermoacoustic system
460(1)
6.4.2 Model-based control
461(3)
6.5 Development of transient growth controller
464(6)
6.5.1 Sliding mode control
465(1)
6.5.2 Adaptive control
466(4)
6.6 Practical application and challenges
470(9)
6.6.1 Sensor selection and placement
470(1)
6.6.2 Actuator selection and placement
471(1)
6.6.3 Secondary peaks after control
472(2)
6.6.4 Transient energy growth
474(1)
6.6.5 Time delays
475(4)
6.7 Effects on combustion efficiency and emissions
479(2)
6.8 Case study of feedback control of Rijke-type combustion instability
481(8)
6.8.1 Modeling of actuated Rijke-type thermoacoustic system
481(4)
6.8.2 Lyapunov-function-based control of thermoacoustic instability
485(4)
6.9 Controller performances
489(4)
6.10 Sliding mode control of thermoacoustic instability
493(8)
6.10.1 Design of sliding mode controller
495(2)
6.10.2 Performances of sliding mode controller
497(4)
6.11 Concluding remarks and future works
501(12)
Appendix: x, ψ and Φ and M involved in the Rijke tube model
502(1)
References
503(10)
Chapter 7 Passive control of combustion instabilities
513(72)
7.1 Introduction
513(8)
7.1.1 Brief description of the damping mechanism
515(3)
7.1.2 Other passive control approach
518(1)
7.1.3 Active control approach
519(2)
7.2 Description of combustion-excited oscillations and acoustic dampers
521(9)
7.2.1 Unsteady combustion as an efficient sound source
521(2)
7.2.2 Acoustic dampers applied in engine systems
523(7)
7.3 "Tunable" acoustic dampers
530(10)
7.3.1 Tunable helmholtz resonator
530(3)
7.3.2 Tunable acoustic liners
533(4)
7.3.3 Challenges and issues associated with acoustic dampers implementation
537(3)
7.4 Case study 1: Perforated liners
540(16)
7.4.1 Numerical simulations
540(4)
7.4.2 Description of the experimental setup
544(4)
7.4.3 Open4oop active control
548(2)
7.4.4 Damping flame pulsating oscillations
550(4)
7.4.5 Concluding remarks
554(2)
7.5 Case study 2: Electrical heater as a damper
556(17)
7.5.1 Nonlinear recurrence relation analysis
556(6)
7.5.2 Preliminary experimental tests
562(3)
7.5.3 Effect of the heater power Qs
565(1)
7.5.4 Measurement of the most "effective" location and minimum electrical power
566(1)
7.5.5 Numerical simulation of combustion-excited oscillations
567(4)
7.5.6 Concluding remarks
571(2)
7.6 Discussion and conclusions
573(12)
Acknowledgments
574(1)
Appendix A Energy balance analysis
574(2)
Appendix B Correlation between pump voltage and the cooling flow velocity
576(1)
Appendix C Acoustic signature of nonreacting combustor with cooling flow implemented
576(1)
References
577(8)
Chapter 8 CFD studies on thermoacoustic instabilities
585(88)
8.1 Introduction
585(2)
8.2 URANS simulations of H2-fueled pulsating combustion oscillations
587(24)
8.2.1 Numerical methods and governing equations
587(4)
8.2.2 Model settings and data postprocessing
591(1)
8.2.3 Effects of mass flow rate and heating bands' temperature
592(11)
8.2.4 Concluding remarks
603(1)
8.2.5 Code availability
604(1)
8.2.6 Appendix
604(7)
8.3 NOx emission reduction reaction of NH3-H2 with self-excited combustion oscillations
611(19)
8.3.1 Introduction
611(1)
8.3.2 Modeled premixed combustor with NH3-H2 fueled
612(3)
8.3.3 Model validation and mesh-independence studies
615(3)
8.3.4 Effects of total mass, H2 mass fraction and Heat exchangers
618(10)
8.3.5 Concluding remarks
628(2)
8.4 RANS studies on premixed CH4/air swirling combustion instability
630(15)
8.4.1 3D Physical models and numerical methods
630(2)
8.4.2 Model validations and mesh and time-independence study
632(2)
8.4.3 Effects of swirling number SN, inlet air flow rate Va and inlet temperature 7
634(4)
8.4.4 Further studies on the heat exchanger temperature TH on damping thermoacoustic instability
638(6)
8.4.5 Conclusions
644(1)
8.5 LES studies on swirling combustion instabilities
645(18)
8.5.1 Numerical methods
645(4)
8.5.2 Model validations
649(13)
8.5.3 Conclusions
662(1)
8.6 Concluding remarks
663(10)
Appendix A Chemical reaction mechanism
664(2)
Appendix B Experimental setup
666(1)
Appendix C
666(1)
References
667(6)
Chapter 9 Real-time mode decomposition and proper orthogonal/dynamic mode decomposition analyses of aeroacoustics and ramjet thermoacoustic instability
673(68)
9.1 Introduction
673(2)
9.2 A Real-time decomposition algorithm for monitoring and controlling combustion system
675(16)
9.2.1 Theory of real-time decomposition algorithm
675(5)
9.2.2 Numerical evaluation of the real-time mode decomposition algorithm performances
680(2)
9.2.3 Experimental demonstration
682(3)
9.2.4 Further experimental implementation
685(4)
9.2.5 Discussion and concluding remarks
689(2)
9.3 Proper orthogonal decomposition studies on Rijke-type thermoacoustic instability
691(14)
9.3.1 Experimental test rig and data-processing methodologies
693(3)
9.3.2 Single sensor measurement and an array of pressure sensors measurements
696(8)
9.3.3 Concluding remarks
704(1)
9.4 Dynamic mode decomposition and proper orthogonal decomposition analyses of combustion instability in a solid-fueled Ramjet combustor
705(28)
9.4.1 Description of the 2D numerical ramjet model
707(6)
9.4.2 Chemical reaction model and acoustic signature validations
713(1)
9.4.3 Reaction-involved flow field characteristics
714(3)
9.4.4 Proper orthogonal decomposition and dynamic mode decomposition analyses of solid fuel ramjet flow fields
717(9)
9.4.5 Further detailed dynamic mode decomposition analyses on the solid fuel ramjet flow field
726(5)
9.4.6 Concluding remarks
731(2)
9.5 Conclusions and future work
733(8)
References
734(7)
Chapter 10 Meso- and micro-scale combustion instability and flame characteristics
741(90)
10.1 Introduction
741(1)
10.2 Swirli tubular flame--acoustic interaction in a meso-scale premixed combustor
742(16)
10.2.1 Experimental apparatus
743(2)
10.2.2 Effects of acoustic frequency f0, magnitude P0 and mixture flow rate QA
745(8)
10.2.3 Proper orthogonal decomposition (POD) analysis
753(4)
10.2.4 Concluding remarks
757(1)
10.3 Combustion instability in an oxy-methane meso-combustor with a swirl tubular flame
758(19)
10.3.1 Experimental method
760(2)
10.3.2 Systematic studies of Case A, B, and C with different Sw
762(11)
10.3.3 Effects of C02 dilution and inner diameter and injection slit size
773(4)
10.3.4 Concluding remarks
777(1)
10.4 Flame stability and combustion characteristics in a meso-scale combustor
777(21)
10.4.1 Experimental setup
779(2)
10.4.2 Effects of inlet flow rates and fuel properties on flame stability and combustion
781(16)
10.4.3 Concluding remarks
797(1)
10.5 Micro-scale planar combustor: flame structure, blowout limit and radiant efficiency
798(2)
10.6 Thermal performances and NOx emission in a modeled premixed CH4/NH3 micro-planar combustor
800(17)
10.6.1 Description of numerically modeled micro-planar combustor
801(5)
10.6.2 Effects of equivalence ratio, inlet flow rate and fuel components
806(11)
10.6.3 Concluding remarks
817(1)
10.7 Concluding remarks and future works
817(14)
References
818(13)
Chapter 11 Ramjet combustion instability and thermodynamic performances
831(76)
11.1 Introduction
831(1)
11.2 Solid-fueled ramjet combustion instability
832(24)
11.2.1 Description of the 2D numerical model
832(4)
11.2.2 Mesh-independency studies and model validation
836(2)
11.2.3 Effects of inlet thermodynamic properties on generating combustion instability
838(15)
11.2.4 Conclusions
853(3)
11.3 Guide vane effect on reacting flow characteristics in a ramjet combustor
856(22)
11.3.1 Introduction
856(1)
11.3.2 Models and numerical method
857(6)
11.3.3 Non-reacting flow field characteristics
863(2)
11.3.4 Fuel-air mixing and combustion performances
865(8)
11.3.5 Total pressure losses and combustor drag
873(4)
11.3.6 Concluding remarks
877(1)
11.4 Swirling effect on thermodynamic performances of a solid-fuel ramjet with paraffin-polyethylene
878(22)
11.4.1 Experimental setup
879(6)
11.4.2 Experimental results and discussion
885(13)
11.4.3 Concluding remarks
898(2)
11.5 Concluding remarks
900(7)
References
901(6)
Chapter 12 Swirling combustion: nonlinear dynamics and emissions
907(62)
12.1 Introduction
907(1)
12.2 Equivalence ratio φ effect on nonlinear dynamics
908(19)
12.2.1 Description of experimental methods
908(3)
12.2.2 Data-processing algorithms and methodologies
911(2)
12.2.3 Characterizing combustion states under different equivalence ratios
913(5)
12.2.4 States transitions and effect of the combustion chamber length
918(8)
12.2.5 Concluding remarks
926(1)
12.3 Effect of excited combustor natural resonance modes on nonlinear dynamics
927(21)
12.3.1 Experimental setup
928(2)
12.3.2 Nonlinear characterization of forced combustor dynamics
930(8)
12.3.3 Effects of equivalence ratio and acoustic forcing amplitude
938(3)
12.3.4 Flame describing function measurements
941(4)
12.3.5 Concluding remarks
945(1)
12.3.6 Appendix
946(2)
12.4 Characterizing emissions and thermodynamic properties of a swirling thermoacoustic combustor
948(13)
12.4.1 Description of the experiment
950(2)
12.4.2 Experimentally observed nonlinear limit cycle oscillations
952(5)
12.4.3 Combustion emissions and thermodynamic properties
957(3)
12.4.4 Concluding remarks
960(1)
12.5 Concluding remarks and future work
961(8)
References
962(7)
Chapter 13 Waste thermal energy harvesting from a thermoacoustic system
969(70)
13.1 Introduction
969(1)
13.2 Energy harvesting from a bifurcating thermoacoustic-piezoelectric system
970(16)
13.2.1 Model of the bifurcating thermoacoustic-piezoelectric system
971(8)
13.2.2 Description of the bifurcating setup for energy harvesting
979(4)
13.2.3 Experimental measurements of the output power and efficiency
983(1)
13.2.4 Concluding remarks
984(1)
13.2.5 Appendix A matrices U and V
985(1)
13.2.6 Appendix B Mechanical-electrical coupling piezoelectric generator
986(1)
13.3 Standing-wave thermoacoustic-piezoelectric energy harvester
986(20)
13.3.1 Introduction
986(1)
13.3.2 Description of the theoretical models
987(4)
13.3.3 Experimental studies
991(14)
13.3.4 Concluding remarks
1005(1)
13.4 Theoretical and experimental studies on a thermoacoustic piezoelectric energy harvester
1006(26)
13.4.1 Introduction
1006(1)
13.4.2 Analytical model
1007(7)
13.4.3 Experimental studies
1014(7)
13.4.4 Effect of temperature distribution
1021(5)
13.4.5 Effect of geometrical and electrical parameters
1026(3)
13.4.6 Concluding remarks
1029(1)
13.4.7 Appendix A. Piezoelectric unimorph transducer
1029(3)
13.5 Concluding remarks and future work
1032(7)
References
1033(6)
Chapter 14 Standing-wave thermoacoustic engines
1039(52)
14.1 Introduction
1039(2)
14.2 RANS/DES/SBES simulations on standing-wave thermoacoustic heat engine
1041(22)
14.2.1 3D RANS simulations of standing-wave thermoacoustic engine
1041(6)
14.2.2 Critical onset temperature analysis and preliminary results
1047(2)
14.2.3 Performances comparison between thermoacoustic engines driven by cryogenic liquids and waste heat
1049(7)
14.2.4 Optimization studies on stack plate spacing tp
1056(6)
14.2.5 Comparison of URANS, DES and SBES
1062(1)
14.2.6 Concluding remarks
1062(1)
14.3 LES simulations of standing-wave thermoacoustic engine
1063(14)
14.3.1 Description of the 3D large eddy simulations model
1064(5)
14.3.2 Acoustics, hydrodynamics and heat transfer characteristics
1069(8)
14.3.3 Concluding remarks
1077(1)
14.4 Energy conversion in a high-frequency standing-wave thermoacoustic engine
1077(9)
14.4.1 Description of the experimental setup
1078(2)
14.4.2 Theoretical studies based on linear thermoacoustic theory
1080(3)
14.4.3 Experimental verification and results
1083(3)
14.4.4 Concluding remarks
1086(1)
14.5 Concluding remarks and future work
1086(5)
References
1087(4)
Appendix 1091(2)
Index 1093
Prof. Dan Zhao is the director of Master Engineering Studies at the University of Canterbury, New Zealand. He serves on a number of scientific journals as the chief and associate editors such as AIAA Journal, Journal of the Royal Society of New Zealand, Aerospace Science and Technology, and Journal of Engineering for Gas Turbines and Power (ASME). Prof. Zhao has been awarded with the prestigious fellowships from Engineering New Zealand, European Academy of Sciences and Arts, European Academy of Sciences as well as the ASEAN Academy of Engineering and Technology. His research expertise and interests include applying theoretical, numerical, and experimental approaches to study CO2 -free combustion science and technology, fabric drying, aeroacoustics, thermoacoustics; UAV aerodynamics; propulsion; energy harvesting; and renewable energy and fuel (ammonia and hydrogen)