Atnaujinkite slapukų nuostatas

El. knyga: Thermodynamic Mechanism of MQL Grinding with Nano Bio-lubricant

  • Formatas: PDF+DRM
  • Išleidimo metai: 30-Oct-2023
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789819962655
  • Formatas: PDF+DRM
  • Išleidimo metai: 30-Oct-2023
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789819962655

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book discusses the thermodynamic mechanism of MQL grinding with nano-biological lubricant from the force, heat, surface integrity, and micro-morphology.

It makes up the fatal defect of the lack of heat transfer capability of traditional MQL grinding. The machining accuracy, surface quality, especially surface integrity of the workpiece, are significantly improved; at the same time, the service life of the grinding wheel is increased and the working environment is improved.

The general scope of the books content is the effects of MQL grinding with nano-bio-lubricant on grinding force, thermal mechanism, and surface.

It provides a new method of sustainable green grinding for environment-friendly, resource-saving, and energy-efficient utilization and solves the technical bottleneck of the insufficient capacity in MQL heat transfer.

Chapter
1. Prolegomenon.
Chapter
2. Prediction model of grinding force under different lubrication conditions based on the principle of material fracture removal and plastic accumulation.
Chapter
3. Velocity effects and material removal mechanical behavior under different lubrication conditions.
Chapter
4. Probability density distribution of droplet size and convective heat transfer mechanism of nano bio-lubricant.
Chapter
5. Design and experimental evaluation of the measurement system for convective heat transfer coefficient of nano bio-lubricant spray Cooling.
Chapter
6. Dynamic model of temperature field in micro-grinding of biological bone cooled by nano bio-lubricant spray.
Chapter
7. Design of orthogonal experiments for grinding titanium alloys under different working conditions and analysis of signal-to-noise ratio and grey correlation.
Chapter
8. Numerical simulation and experimental validation of the temperature field of cryogenic air nano bio-lubricant MQL grinding.-Chapter
9. Experimental study of grinding ratio grinding energy and friction coefficient of cryogenic air nano bio-lubricant MQL grinding.
Chapter
10. The influence of vortex tube cold flow ratio on heat transfer mechanism of cryogenic air nano bio-lubricant MQL grinding.
Chapter
11. The influence of volume fraction of nano bio-lubricant on heat transfer mechanism of cryogenic air nano bio-lubricant MQL grinding.
Chapter
12. MQL grinding mechanism of Al2O3/SiC hybrid nano bio-lubricant and evaluation method of surface morphology.
Chapter
13. The influence of different ratios of Al2O3/SiC hybrid nano-biolubricants on the grinding performance of MQL.
Chapter
14. The influence of different physical synergies of hybrid nanoparticles on MQL grinding performance and microscopic characterization of surface morphology.
Chapter
15. Optimal design of MQL grinding jet parameters for nano bio-lubricant and evaluation of power spectral density functions for MQL.


Li Changhe, Ph.D. of Mechanical engineering, is Professor of Qingdao University of Technology, Doctoral Tutor, Foreign Academician of the Russian Academy of Engineering, Global highly cited scientists (Clarivate), Highly Cited Chinese Researchers (Elsevier), Special Professor of Taishan Scholars in Shandong Province, Outstanding Inventor of Shandong Province, and Outstanding scientific and technological worker in Shandong Province. Prof. Li mainly engaged in grinding and precision machining, nanofluids thermal science, and MQL device technology ranked in the forefront of the world.