Atnaujinkite slapukų nuostatas

El. knyga: Thermodynamics for Chemical Engineers

  • Formatas: EPUB+DRM
  • Išleidimo metai: 02-Jun-2022
  • Leidėjas: Blackwell Verlag GmbH
  • Kalba: eng
  • ISBN-13: 9783527836796
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 02-Jun-2022
  • Leidėjas: Blackwell Verlag GmbH
  • Kalba: eng
  • ISBN-13: 9783527836796
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Thermodynamics for Chemical Engineers Learn the basics of thermodynamics in this complete and practice-oriented introduction for students of chemical engineering

Thermodynamics is a vital branch of physics that focuses upon the interaction of heat, work, and temperature with energy, radiation, and matter. Thermodynamics can apply to a wide range of sciences, but is particularly important in chemical engineering, where the interconnection of heat and work with chemical reactions or physical changes of state are studied according to the laws of thermodynamics. Moreover, thermodynamics in chemical engineering focuses upon pure fluid and mixture properties, phase equilibrium, and chemical reactions within the confines of the laws of thermodynamics.

Given that thermodynamics is an essential course of study in chemical and petroleum engineering, Thermodynamics for Chemical Engineers provides an important introduction to the subject that comprehensively covers the topic in an easily-digestible manner. Suitable for undergraduate and graduate students, the text introduces the basic concepts of thermodynamics thoroughly and concisely while providing practice-oriented examples and illustrations. Thus, the book helps students bridge the gap between theoretical knowledge and basic experiments and measurement characteristics.

Thermodynamics for Chemical Engineers readers will also find:





Practice-oriented examples to help students connect the learned concepts to actual laboratory instruments and experiments A broad suite of illustrations throughout the text to help illuminate the information presented Authors with decades working in chemical engineering and teaching thermodynamics

Thermodynamics for Chemical Engineers is the ideal resource not just for undergraduate and graduate students in chemical and petroleum engineering, but also for anyone looking for a basic guide to thermodynamics.
Preface xi
1 Introduction
1(20)
1.1 Definition
1(1)
1.2 Dimensions, Fundamental Quantities, and Units
2(2)
1.3 Secondary or Derived Physical Quantities
4(9)
1.4 SI Usage of Units and Symbols
13(1)
1.5 Thermodynamic Systems and Variables
14(2)
1.6 Zeroth Law
16(5)
Problems for
Chapter 1
16(5)
2 Energy and the First Law
21(26)
2.1 Introduction
21(1)
2.2 Energy
22(2)
2.3 First Law of Thermodynamics
24(6)
2.4 Application of Solution Procedure to Simple Cases
30(4)
2.5 Practical Application Examples
34(5)
2.5.1 Compressors/Pumps
34(1)
2.5.2 Turbines/Expanders
35(1)
2.5.3 Condensers/Vaporizers/Reboilers
36(1)
2.5.4 Heat Exchanger
36(2)
2.5.5 Sample Cylinder
38(1)
2.6 Differential Form
39(1)
2.7 Inserting Time: Unsteady-State Flow Process
39(1)
2.8 Recap
40(7)
Problems for
Chapter 2
40(5)
Reference
45(2)
3 PVT Relations and Equations of State
47(66)
3.1 Introduction
47(1)
3.2 Graphical Representations
47(6)
3.3 Critical Region
53(1)
3.4 Tabular Representations
54(2)
3.5 Mathematical Representations
56(30)
3.5.1 Perfect and Ideal Gas EOS
57(1)
3.5.2 Reversible Processes Involving Ideal Gases in Closed Systems
58(1)
3.5.2.1 Constant Volume (Isochoric) Process
59(1)
3.5.2.2 Constant Pressure (Isobaric) Process
59(1)
3.5.2.3 Constant Temperature (Isothermal) Process
60(1)
3.5.2.4 Adiabatic Process
60(2)
3.5.2.5 Polytropic Processes
62(3)
3.5.3 Virial Equation of State
65(4)
3.5.3.1 Correlations for the Second and Third Virial Coefficient
69(6)
3.5.4 Other Special Equations
75(1)
3.5.4.1 Tait Equation
75(1)
3.5.4.2 Rackett Equation
75(1)
3.5.4.3 Riedel Equation
75(1)
3.5.4.4 Yen and Woods Equation
76(1)
3.5.4.5 Chueh and Prausnitz Equation
76(1)
3.5.4.6 Generalized Lee--Kesler Correlation
76(1)
3.5.5 Cubic Equations of State
77(1)
3.5.5.1 Van der Waals (vdW) Equation of State
77(2)
3.5.5.2 Other Cubic EOS
79(1)
3.5.5.3 Redlich--Kwong (RK) EOS
80(2)
3.5.5.4 Soave--Redlich--Kwong (SRK) Equation of State
82(1)
3.5.5.5 Peng-Robinson (PR) Equation of State
82(1)
3.5.6 Multiparameter Equations of State
83(1)
3.5.6.1 Benedict--Webb--Rubin (BWR) Equation of State
83(1)
3.5.6.2 Boublik--Alder--Chen--Kreglewski
83(2)
3.5.7 Reference Equation of State
85(1)
3.6 Calculation of Volumes from EOS
86(3)
3.7 Vapor Pressure and Enthalpy of Vaporization Correlations
89(2)
3.8 Ideal Gas Enthalpy Changes: Applications
91(22)
3.8.1 Heat of Reaction
91(1)
3.8.1.1 Standard Heat of Reaction
91(1)
3.8.1.2 Standard Heat of Formation
92(1)
3.8.1.3 Standard Heat of Combustion
92(1)
3.8.2 Temperature Dependence of the Heat of Reaction
92(2)
3.8.3 Practical Calculations
94(1)
3.8.3.1 Adiabatic Flame Temperature
95(1)
3.8.3.2 Reaction with Heat Transfer
95(4)
Problems for
Chapter 3
99(10)
References
109(4)
4 Second Law of Thermodynamics
113(32)
4.1 Introduction
113(1)
4.2 General and Classical Statements of the Second Law
114(2)
4.3 Heat Engines, Refrigerators, and Cycles
116(1)
4.4 Implications of the Second Law
117(10)
4.5 Efficiency
127(1)
4.6 Specific Heat/Heat Capacity
128(5)
4.6.1 Entropy Changes for Ideal Gases
130(3)
4.7 Entropy Balance Equation for Open Systems
133(4)
4.8 Availability and Maximum/Minimum Work
137(8)
Problems for
Chapter 4
139(6)
5 Thermodynamic Relations
145(34)
5.1 Introduction
145(1)
5.2 Mathematics Review
145(3)
5.2.1 Exact Differentials
145(1)
5.2.2 Inexact Differentials and Line Integration
146(1)
5.2.3 Properties of Functions of Several Variables
147(1)
5.3 Fundamental Thermodynamics Equation
148(1)
5.4 Legendre Transforms
149(2)
5.5 Maxwell Relations
151(2)
5.6 Derivation of Thermodynamic Relationships
153(2)
5.7 Open Systems: Chemical Potential
155(2)
5.8 Property Change Calculations
157(3)
5.8.1 Temperature Derivatives
157(1)
5.8.2 Volume Derivatives
158(1)
5.8.3 Pressure Derivatives
159(1)
5.9 Residual Properties
160(3)
5.10 Property Changes Using Residual Functions
163(3)
5.11 Generalized Correlations for Residual Functions
166(3)
5.12 Two-Phase Systems -- Clapeyron Equation
169(10)
Problems for
Chapter 5
172(7)
6 Practical Applications for Thermodynamics
179(78)
6.1 Fluid Flow
179(17)
6.1.1 Flow Through Ducts
179(5)
6.1.2 Properties of Sub-cooled Liquids (Compressed Liquid)
184(2)
6.1.3 Pumps, Compressors, and Expanders
186(10)
6.2 Heat Engines and Refrigeration Units
196(61)
6.2.1 Heat and Work
196(2)
6.2.2 Rankine Cycle
198(6)
6.2.3 Modifications of the Rankine Cycle
204(7)
6.2.4 A Internal Combustion Engines
211(1)
6.2.4.1 Otto Cycle
211(5)
6.2.4.2 Diesel Engine Cycle
216(4)
6.2.4.3 Gas Turbine Cycle
220(5)
6.2.5 Refrigeration: The Carnot Cycle for a Refrigeration Unit
225(1)
6.2.5.1 Vapor Compression Cycle
226(3)
6.2.5.2 Air Refrigeration Cycle
229(4)
6.2.5.3 Absorption Refrigeration
233(2)
6.2.5.4 Heat Pump
235(1)
6.2.5.5 Liquefaction Process
235(6)
6.2.6 Process Simulators: Using Process Simulation for Fluid Flow Problems
241(8)
Problems for
Chapter 6
249(8)
7 Solution Theory
257(68)
7.1 Introduction
257(1)
7.2 Composition Variables
257(3)
7.3 Chemical Potential
260(2)
7.3.1 More Maxwell Relations
261(1)
7.4 Partial Molar Properties
262(6)
7.5 General Gibbs--Duhem Equation
268(2)
7.6 Differential Thermodynamic Properties in Open Systems in Terms of Measurables
270(1)
7.6.1 Using T and nV
270(1)
7.6.2 Using T, P
271(1)
7.7 Ideal Gas Mixtures
271(4)
7.8 Fugacity and Fugacity Coefficient for Pure Substances
275(2)
7.9 Equations for Calculating Fugacity
277(3)
7.9.1 Fugacity of a Vapor (Point A)
277(1)
7.9.2 Fugacity of a Vapor or Saturated Liquid (Point B)
277(1)
7.9.3 Fugacity of Liquid (Point C)
278(1)
7.9.4 Fugacity of Solid at the Melting Point (Point D)
279(1)
7.9.5 Fugacity of a Solid (Point E)
279(1)
7.10 Application of Fugacity Equation to Gases and Liquids
280(4)
7.11 Fugacity and Fugacity Coefficient in a Solution
284(3)
7.12 Calculation of the Fugacity and Fugacity Coefficient in Solution
287(11)
7.12.1 Using Cubic EOS
291(1)
7.12.1.1 Mixing Rules
292(6)
7.13 Ideal Solutions
298(3)
7.14 Excess Properties. Activity Coefficients
301(2)
7.15 Activity Coefficients with Different Standard States
303(2)
7.16 Effect of Pressure on the Fugacity in Solution and Activity Coefficients Using the Lewis--Randall Rule
305(2)
7.17 Property Change on Mixing
307(3)
7.18 Excess Gibbs Energy Models
310(15)
Problems for
Chapter 7
318(5)
References
323(2)
8 Phase Equilibrium
325(80)
8.1 Introduction
325(1)
8.2 Equilibrium
325(4)
8.3 Gibbs Phase Rule
329(1)
8.4 Pure Components and Phase Equilibria
330(2)
8.5 Different Phase Diagrams for Binary Mixtures at Vapor--Liquid Equilibrium (VLE)
332(4)
8.6 Vapor/Liquid Equilibrium Relationship
336(2)
8.7 Phase Calculations Using the Gamma-Phi Formulation
338(11)
8.7.1 Bubble Pressure
339(1)
8.7.2 Bubble Temperature
340(1)
8.7.3 Dew Pressure
341(1)
8.7.4 Dew Temperature
342(1)
8.7.5 Flash
342(7)
8.8 Phase Calculations Using the Phi--Phi Formulation
349(9)
8.9 Modern Approach to Phase Equilibrium Calculations
358(16)
8.9.1 Equal Area Rule for Binary Mixtures
359(6)
8.9.2 A General Approach for Multicomponent and Multiphase Systems
365(9)
8.10 Binary Liquid--Liquid Equilibrium (LLE)
374(7)
8.11 Binary Vapor--Liquid--Liquid Equilibrium (VLLE)
381(6)
8.12 Binary Vapor--Solid Equilibrium (VSE)
387(4)
8.13 Binary Liquid--Solid Equilibrium (LSE)
391(14)
Problems for
Chapter 8
397(6)
References
403(2)
9 Chemical Reaction Equilibria
405(44)
9.1 Introduction
405(1)
9.2 Nature of Reactions
406(1)
9.3 Chemical Reaction Stoichiometry
406(1)
9.4 Extent of Reaction
407(1)
9.5 Phase Rule for Reacting Systems
408(2)
9.6 Principles of Reaction Equilibria
410(3)
9.7 Understanding the Reaction Equilibria
413(2)
9.8 Equilibrium Constant
415(2)
9.9 Temperature Dependence of the Equilibrium Constant
417(3)
9.10 Standard States
420(1)
9.11 Applications to Different Types of Reactions
420(9)
9.11.1 Reactions in Single-Phase Systems
421(1)
9.11.1.1 Gas-Phase Reactions
421(1)
9.11.1.2 Liquid-Phase Reactions
422(2)
9.11.1.3 Solid Reactions
424(1)
9.11.2 Heterogeneous Reactions (Different Phase Systems)
425(4)
9.12 Multi-reactions
429(2)
9.13 Nonstoichiometric Solution
431(3)
9.14 Equal Area Rule for Reactive Thermodynamic Equilibrium Calculations
434(15)
Problems for
Chapter 9
440(7)
References
447(2)
A Appendices
449(12)
A.1 Instructions to Add an Add-In Your Computer
449(1)
A.2 Excel® LK CALC Add-In
449(2)
A.3 Excel® STEAM CALC Add-In
451(2)
A.4 Heat Capacity Equations for an Ideal Gas
453(1)
A.5 Antoine Equation Constants
454(1)
A.6 Heat Capacity Equations for liquids
454(1)
A.7 Iterative Procedures for the Calculation of Vapor Liquid Equilibrium
454(7)
A.7.1 Bubble Point Calculations
454(1)
A.7.1.1 Bubble Pressure Calculation
454(1)
A.7.1.2 Bubble Temperature Calculation
455(1)
A.7.2 Dew Point Calculations
456(1)
A.7.2.1 Dew Pressure Calculation
456(1)
A.7.2.2 Dew Temperature Calculation
457(1)
A.7.3 Flash Calculation
458(2)
References
460(1)
Index 461
Kenneth R. Hall is a Senior Development Engineer at Bryan Research & Engineering, a company offering process simulator program and consulting. He spent 50 years teaching in academic programs, primarily at Texas A&M University where he taught thermodynamics and held various managerial positions. He has received 20 national and international awards, and several awards presented by Texas A&M.

Gustavo A. Iglesias-Silva, PhD, is a Professor at the National Technological Institute of Mexico-Technological Institute of Celaya since 1991. He has been invited to be part of evaluation comittees for research projects of the Mexican National Council of Science and Technology (CONACyT) and a member of the evaluation committee of the National System of Researchers in México [ sic].