Atnaujinkite slapukų nuostatas

El. knyga: Thermomechanical Fatigue of Ceramic-Matrix Composites

  • Formatas: EPUB+DRM
  • Išleidimo metai: 09-Aug-2019
  • Leidėjas: Blackwell Verlag GmbH
  • Kalba: eng
  • ISBN-13: 9783527822607
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 09-Aug-2019
  • Leidėjas: Blackwell Verlag GmbH
  • Kalba: eng
  • ISBN-13: 9783527822607
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Guides researchers and practitioners toward developing highly reliable ceramic-matrix composites

The book systematically introduces the thermomechanical fatigue behavior of fiber-reinforced ceramic-matrix composites (CMCs) and environmental barrier coatings, including cyclic loading/unloading tensile behavior, cyclic fatigue behavior, dwell-fatigue behavior, thermomechanical fatigue behavior, and interface degradation behavior. It discusses experimental verification of CMCs and explains how to determine the thermomechanical properties. It also presents damage evolution models, lifetime prediction methods, and interface degradation rules.

Thermomechanical Fatigue of Ceramic-Matrix Composites offers chapters covering unidirectional ceramic-matrix composites and cross-ply and 2D woven ceramic-matrix composites. For cyclic fatigue behavior of CMCs, it looks at the effects of fiber volume fraction, fatigue peak stress, fatigue stress ratio, matrix crack spacing, matrix crack mode, and woven structure on fatigue damage evolution. Both the Dwell-fatigue damage evolution and lifetime predictions models are introduced in the next chapter. Experimental comparisons of the cross-ply SiC/MAS composite, 2D SiC/SiC composite, and 2D NextelTM 720/Alumina composite are also included. Remaining sections examine: thermomechanical fatigue hysteresis loops; in-phase thermomechanical fatigue damage; out-of-phase thermomechanical fatigue; interface degradation models; and much more.

-Offers unique content dedicated to thermomechanical fatigue behavior of ceramic-matrix composites (CMCs) and environmental barrier coatings
-Features comprehensive data tables and experimental verifications
-Covers a highly application-oriented subject CMCs are being increasingly utilized in jet engines, industrial turbines, and exhaust systems

Thermomechanical Fatigue of Ceramic-Matrix Composites is an excellent book for developers and users of CMCs, as well as organizations involved in evaluation and characterization of CMCs. It will appeal to materials scientists, construction engineers, process engineers, and mechanical engineers.
1 Cyclic Loading/Unloading Tensile Fatigue of Ceramic-Matrix Composites
1(116)
1.1 Introduction
1(1)
1.2 Unidirectional Ceramic-Matrix Composites
2(41)
1.2.1 Materials and Experimental Procedures
3(1)
1.2.1.1 C/SiC Composite
3(1)
1.2.1.2 C/Si3N4 and SiC/Si3N4 Composites
3(1)
1.2.1.3 SiC/CAS Composite
4(1)
1.2.2 Theoretical Analysis
4(1)
1.2.2.1 Stress Analysis
4(2)
1.2.2.2 Matrix Cracking
6(1)
1.2.2.3 Interface Debonding
7(1)
1.2.2.4 Fiber Failure
8(1)
1.2.2.5 Hysteresis Theories
9(4)
1.2.3 Results and Discussion
13(1)
1.2.3.1 Effect of Fiber Volume Fraction on Fatigue Hysteresis Loops and Fatigue Hysteresis-Based Damage Parameters
13(2)
1.2.3.2 Effect of Matrix Cracking Density on Fatigue Hysteresis Loops and Fatigue Hysteresis-Based Damage Parameters
15(1)
1.2.3.3 Effect of Fiber/Matrix Interface Shear Stress on Fatigue Hysteresis Loops and Fatigue Hysteresis-Based Damage Parameters
16(4)
1.2.3.4 Effect of Fiber/Matrix Interface Debonded Energy on Fatigue Hysteresis Loops and Fatigue Hysteresis-Based Damage Parameters
20(2)
1.2.3.5 Effect of Fiber Failure on Fatigue Hysteresis Loops and Fatigue Hysteresis-Based Damage Parameters
22(2)
1.2.4 Experimental Comparisons
24(1)
1.2.4.1 C/SiC Composite
24(6)
1.2.4.2 C/Si3N4 Composite
30(3)
1.2.4.3 SiC/Si3N4 Composite
33(5)
1.2.4.4 SiC/CAS Composite
38(5)
1.3 Cross-Ply and 2D Woven Ceramic-Matrix Composites
43(60)
1.3.1 Materials and Experimental Procedures
47(1)
1.3.1.1 C/SiC Composite
47(1)
1.3.1.2 SiC/SiC Composite
48(1)
1.3.2 Theoretical Analysis
49(1)
1.3.2.1 Stress Analysis
49(9)
1.3.2.2 Transverse and Matrix Cracking
58(2)
1.3.2.3 Interface Debonding
60(2)
1.3.2.4 Hysteresis Theories
62(13)
1.3.3 Results and Discussions
75(1)
1.3.3.1 Effect of Fiber Volume Fraction on the Interface Sliding and Fatigue Hysteresis Loops
75(2)
1.3.3.2 Effect of Fatigue Peak Stress on the Interface Sliding and Fatigue Hysteresis Loops
77(2)
1.3.3.3 Effect of Matrix Crack Spacing on the Interface Sliding and Fatigue Hysteresis Loops
79(2)
1.3.3.4 Effect of Interface Properties on the Interface Sliding and Fatigue Hysteresis Loops
81(4)
1.3.3.5 Effect of Matrix Racking Mode Proportion on Interface Sliding and Fatigue Hysteresis Loops
85(2)
1.3.4 Experimental Comparisons
87(1)
1.3.4.1 Cross-Ply C/SiC Composite
87(7)
1.3.4.2 2D SiC/SiC Composite
94(9)
1.4 2.5D and 3D Ceramic-Matrix Composites
103(9)
1.4.1 Materials and Experimental Procedures
104(1)
1.4.1.1 2.5D C/SiC Composite
104(1)
1.4.1.2 3D Braided C/SiC Composite
104(1)
1.4.1.3 3D Needled C/SiC Composite
105(1)
1.4.2 Hysteresis Theories
105(1)
1.4.2.1 Interface Slip Case 1
105(1)
1.4.2.2 Interface Slip Case 2
106(1)
1.4.2.3 Interface Slip Case 3
107(1)
1.4.2.4 Hysteresis Loops
107(1)
1.4.3 Experimental Comparisons
108(1)
1.4.3.1 2.5D C/SiC Composite
108(2)
1.4.3.2 3D Braided C/SiC Composite
110(2)
1.4.3.3 3D Needled C/SiC Composite
112(1)
1.5 Conclusions
112(1)
References
112(5)
2 Cyclic Fatigue Behaviors of Ceramic-Matrix Composites
117(132)
2.1 Introduction
117(1)
2.2 Materials and Experimental Procedures
117(4)
2.2.1 Unidirectional C/SiC Composite
117(1)
2.2.2 Cross-Ply C/SiC Composite
118(1)
2.2.3 2D SiC/SiC Composite at 1000 °C
119(1)
2.2.4 2D SiC/SiC Composite at 1200 °C
120(1)
2.2.5 2D SiC/SiC Composite at 1300 °C
120(1)
2.2.6 3D SiC/SiC Composite at 1300 °C
121(1)
2.3 Hysteresis-Based Damage Parameters
121(1)
2.4 Results and Discussions
122(13)
2.4.1 Effects of Fiber Volume Fraction on Fatigue Damage Evolution
123(2)
2.4.2 Effects of Fatigue Peak Stress on Fatigue Damage Evolution
125(2)
2.4.3 Effects of Fatigue Stress Ratio on Fatigue Damage Evolution
127(1)
2.4.4 Effects of Matrix Crack Spacing on Fatigue Damage Evolution
128(1)
2.4.5 Effects of Matrix Crack Mode on Fatigue Damage Evolution
129(4)
2.4.6 Effects of Woven Structure on Fatigue Damage Evolution
133(2)
2.5 Experimental Comparisons
135(94)
2.5.1 Unidirectional CMCs
135(1)
2.5.1.1 SiC/CAS Composite at Room Temperature
135(2)
2.5.1.2 SiC/CAS-II Composite at Room Temperature
137(3)
2.5.1.3 SiC/1723 Composite at Room Temperature
140(3)
2.5.1.4 C/SiC Composite at Room Temperature
143(4)
2.5.1.5 C/SiC Composite at Elevated Temperature
147(5)
2.5.2 Cross-Ply CMCs
152(1)
2.5.2.1 SiC/CAS Composite at Room Temperature
152(3)
2.5.2.2 C/SiC Composite at Room Temperature
155(1)
2.5.2.3 C/SiC Composite at 800 °C in Air Atmosphere
156(2)
2.5.2.4 SiC/MAS-L Composite at 800 and 1000 °C in Inert Atmosphere
158(1)
2.5.3 2D CMCs
158(1)
2.5.3.1 SiC/SiC Composite at 600, 800, and 1000°C in Inert Atmosphere
158(6)
2.5.3.2 SiC/SiC Composite at 1000°C in Air and in Steam Atmospheres
164(27)
2.5.3.3 SiC/SiC Composite at 1200°C in Air and in Steam Atmospheres
191(18)
2.5.3.4 SiC/SiC Composite at 1300°C in Air Atmosphere
209(17)
2.5.4 3D Braided CMCs
226(3)
2.6 Discussions
229(16)
2.6.1 Cyclic Fatigue at Room Temperature
229(4)
2.6.2 Cyclic Fatigue at Elevated Temperature
233(5)
2.6.3 Comparison Analysis
238(7)
2.7 Conclusions
245(1)
References
246(3)
3 Dwell-Fatigue Behavior of Ceramic-Matrix Composites
249(60)
3.1 Introduction
249(2)
3.2 Theoretical Analysis
251(7)
3.2.1 Dwell-Fatigue Damage Evolution Model
253(3)
3.2.2 Dwell-Fatigue Lifetime Prediction Model
256(2)
3.3 Results and Discussions
258(22)
3.3.1 Effects of Hold Time on Dwell Fatigue Damage Evolution
258(5)
3.3.2 Effects of Stress Level on Dwell Fatigue Damage Evolution
263(5)
3.3.3 Effects of Matrix Crack Spacing on Dwell Fatigue Damage Evolution
268(4)
3.3.4 Effects of Fiber Volume Fraction on Dwell Fatigue Damage Evolution
272(4)
3.3.5 Effects of Oxidation Temperature on Dwell Fatigue Damage Evolution
276(4)
3.4 Experimental Comparisons
280(24)
3.4.1 Cross-Ply SiC/MAS Composite
280(1)
3.4.1.1 566 °C in Air Atmosphere
280(8)
3.4.1.2 1093 °C in Air Atmosphere
288(8)
3.4.1.3 Comparison Analysis
296(5)
3.4.2 2D SiC/SiC Composite
301(2)
3.4.3 2D Nextel 720/Alumina Composite
303(1)
3.5 Conclusions
304(1)
References
305(4)
4 Thermomechanical Fatigue Behaviors of Ceramic-Matrix Composites
309(128)
4.1 Introduction
309(1)
4.2 Theoretical Analysis
310(3)
4.2.1 Thermomechanical Stress Analysis
310(2)
4.2.2 Thermomechanical Damage Parameters
312(1)
4.3 Thermomechanical Fatigue Hysteresis Loops
313(32)
4.3.1 Results and Discussions
313(1)
4.3.1.1 Effects of Fiber Volume Fraction on the Thermomechanical Fatigue Hysteresis Loops and Fiber/Matrix Interface Sliding
313(4)
4.3.1.2 Effects of Fatigue Peak Stress on the Thermomechanical Fatigue Hysteresis Loops and Fiber/Matrix Interface Sliding
317(4)
4.3.1.3 Effects of Matrix Crack Spacing on the Thermomechanical Fatigue Hysteresis Loops and Fiber/Matrix Interface Sliding
321(4)
4.3.1.4 Effects of Fiber/Matrix Interface Frictional Coefficient on the Thermomechanical Fatigue Hysteresis Loops and Fiber/Matrix Interface Sliding
325(3)
4.3.1.5 Effects of Interface Debonded Energy on the Thermomechanical Fatigue Hysteresis Loops and Fiber/Matrix Interface Sliding
328(4)
4.3.1.6 Effects of Thermal Cyclic Temperature Range on the Thermomechanical Fatigue Hysteresis Loops and Fiber/Matrix Interface Sliding
332(4)
4.3.2 Experimental Comparisons
336(1)
4.3.2.1 Isothermal Fatigue Hysteresis Loops
336(5)
4.3.2.2 In-Phase Thermomechanical Fatigue Hysteresis Loops
341(3)
4.3.2.3 Out-of-phase Thermomechanical Fatigue Hysteresis Loops
344(1)
4.4 In-phase Thermomechanical Fatigue Damage
345(28)
4.4.1 Results and Discussions
347(1)
4.4.1.1 Effects of Fiber Volume Fraction on In-phase Thermomechanical Fatigue Damage Evolution
348(6)
4.4.1.2 Effects of Fatigue Peak Stress on In-phase Thermomechanical Fatigue Damage Evolution
354(3)
4.4.1.3 Effects of Matrix Stochastic Cracking on In-phase Thermomechanical Fatigue Damage Evolution
357(4)
4.4.1.4 Effects of Interface Properties on In-phase Thermomechanical Fatigue Damage Evolution
361(4)
4.4.1.5 Effects of Thermal Cyclic Temperature Range on In-phase Thermomechanical Fatigue Damage Evolution
365(3)
4.4.1.6 Comparisons Between In-phase Thermomechanical and Isothermal Fatigue Loading
368(2)
4.4.2 Experimental Comparisons
370(1)
4.4.2.1 Thermomechanical Fatigue Loading
371(1)
4.4.2.2 Isothermal Fatigue Loading
372(1)
4.5 Out-of-phase Thermomechanical Fatigue
373(30)
4.5.1 Results and Discussions
374(1)
4.5.1.1 Effects of Fiber Volume Fraction on Out-of-phase Thermomechanical Fatigue Damage Evolution
374(5)
4.5.1.2 Effects of Fatigue Peak Stress on Out-of-phase Thermomechanical Fatigue Damage Evolution
379(4)
4.5.1.3 Effects of Matrix Crack Spacing on Out-of-phase Thermomechanical Fatigue Damage Evolution
383(3)
4.5.1.4 Effects of Interface Frictional Coefficient on Out-of-phase Thermomechanical Fatigue Damage Evolution
386(4)
4.5.1.5 Effects of Thermal Cyclic Temperature Range Out-of-phase Thermomechanical Fatigue Damage Evolution
390(3)
4.5.1.6 Comparisons Between In-phase/Out-of-phase Thermomechanical Fatigue and Isothermal Fatigue Loading
393(4)
4.5.2 Experimental Comparisons
397(1)
4.5.2.1 Out-of-phase Thermomechanical Fatigue Loading at the Temperature Range from 566 to 1093°C
397(2)
4.5.2.2 Isothermal Fatigue Loading at 566°C
399(2)
4.5.2.3 Isothermal Fatigue Loading at 1093°C
401(2)
4.6 Thermomechanical Fatigue with Different Phase Angles
403(31)
4.6.1 Results and Discussions
403(5)
4.6.1.1 Effects of Fiber Volume Fraction on Thermomechanical Fatigue Damage Evolution
408(8)
4.6.1.2 Effects of Fatigue Peak Stress on Thermomechanical Fatigue Damage Evolution
416(10)
4.6.1.3 Effects of Matrix Crack Spacing on Thermomechanical Fatigue Damage Evolution
426(6)
4.6.2 Experimental Comparisons
432(1)
4.6.2.1 In-phase Thermomechanical Fatigue
433(1)
4.6.2.2 Out-of-phase Thermomechanical Fatigue
433(1)
4.7 Conclusions
434(1)
References
434(3)
5 Interface Degradation of Ceramic-Matrix Composites Under Thermomechanical Fatigue Loading
437(38)
5.1 Introduction
437(1)
5.2 Interface Degradation Models
438(7)
5.2.1 Interface Slip Case 1
438(1)
5.2.2 Interface Slip Case 2
439(1)
5.2.3 Interface Slip Case 3
439(1)
5.2.4 Interface Slip Case 4
440(1)
5.2.5 Hysteresis Loops and Hysteresis-Based Damage Parameters
441(4)
5.3 Experimental Comparisons
445(28)
5.3.1 Unidirectional C/SiC Composite
445(1)
5.3.1.1 Room Temperature
445(6)
5.3.1.2 Elevated Temperature
451(5)
5.3.1.3 Comparison Analysis
456(1)
5.3.2 Unidirectional SiC/Si3N4 Composite
457(1)
5.3.2.1 Room Temperature
457(4)
5.3.2.2 Elevated Temperature
461(6)
5.3.2.3 Comparison Analysis
467(1)
5.3.3 2D SiC/SiC Composite
468(1)
5.3.3.1 Room Temperature
468(2)
5.3.3.2 Elevated Temperature
470(2)
5.3.3.3 Comparison Analysis
472(1)
5.4 Conclusions
473(1)
References
474(1)
Index 475
Longbiao Li, PhD, is Lecturer in the College of Civil Aviation at Nanjing University of Aeronautics and Astronautics in China, where he received his PhD. His research focuses on the thermomechanical fatigue of high-temperature ceramic-matrix composites. He has published more than 100 journal articles.