Atnaujinkite slapukų nuostatas

El. knyga: Thermophilic Fungi: Basic Concepts and Biotechnological Applications

  • Formatas: 352 pages
  • Išleidimo metai: 13-Mar-2018
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781351118170
  • Formatas: 352 pages
  • Išleidimo metai: 13-Mar-2018
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781351118170

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book aims to fill the gap by documenting thermophilic fungi discovered over the past five decades. The chapters spans from covering basic aspects, taxonomy and classification including molecular phyologeny and biotechnological applications of thermophilic fungi.
Preface xiii
Author xv
Acknowledgments xvii
Section I: Basic Concepts
Chapter 1 Introduction
3(26)
1.1 Overview of Thermophilic Fungi
3(7)
1.2 Defining Thermophily
10(1)
1.3 Historical Background
11(2)
1.4 Habitat Relationships
13(2)
1.5 Isolation and Culture of Thermophilic Fungi
15(5)
1.5.1 Isolation Techniques
16(1)
1.5.1.1 Dilution Plate Technique
16(1)
1.5.1.2 Warcup's Soil Plate Method
16(1)
1.5.1.3 Humidified Chamber Technique
16(1)
1.5.1.4 Paired Petri Plate Technique
17(1)
1.5.1.5 Waksman's Direct Inoculation Method
17(1)
1.5.1.6 Isolation from Air
17(1)
1.5.2 Culture Media for Isolation of Thermophilic Fungi
17(3)
1.6 Biotechnological Significance
20(3)
References
23(6)
Chapter 2 Origin of Thermophily in Fungi
29(26)
2.1 Introduction
29(1)
2.2 Origin and Ecological Relationships
30(3)
2.3 Fungal Adaptations to Thermophily
33(1)
2.4 Hypothesis to Explain Thermophilism in Fungi
34(11)
2.4.1 Protein Thermostability and Stabilization
35(1)
2.4.1.1 Structure-Based
35(1)
2.4.1.2 Sequence-Based
36(1)
2.4.2 Heat Shock Proteins
36(2)
2.4.3 Proteome and Genome as Determinants of Thermophilic Adaptation
38(2)
2.4.4 Reduction in Genome Size
40(1)
2.4.5 Thermotolerance Genes
41(1)
2.4.6 Rapid Turnover of Essential Metabolites
41(1)
2.4.7 Macromolecular Thermostability
42(1)
2.4.8 Ultrastructural Thermostability and Pigmentation
43(1)
2.4.9 Lipid Solubilization
44(1)
2.5 Acquired Thermotolerance
45(1)
2.6 Homeoviscous versus Homeophasic Adaptations
46(1)
References
47(8)
Chapter 3 Physiology of Thermophilic Fungi
55(20)
3.1 Introduction
55(1)
3.2 Nutritional Requirements of Thermophilic Fungi
56(1)
3.3 Growth and Metabolism of Thermophilic Fungi
57(2)
3.4 Effects of Environmental Factors on Growth
59(8)
3.4.1 Effect of Temperature
59(3)
3.4.2 Effect of pH
62(2)
3.4.3 Effect of Oxygen
64(1)
3.4.4 Effect of Solutes and Water Activity
64(1)
3.4.5 Hydrostatic Pressure
65(1)
3.4.6 Effect of Light
66(1)
3.4.7 Relative Humidity
66(1)
3.5 Complex Carbon Sources and Adaptations for Mixed Substrate Utilization
67(1)
3.6 Nutrient Transport
68(1)
3.7 Protein Breakdown and Turnover
68(1)
3.8 Virulence
69(1)
References
70(5)
Chapter 4 Habitat Diversity
75(30)
4.1 Introduction
75(1)
4.2 Natural Habitats
76(12)
4.2.1 Soil
76(7)
4.2.1.1 Desert Soils
80(1)
4.2.1.2 Coal Mine Soils
81(1)
4.2.1.3 Geothermal Soils
81(1)
4.2.1.4 Dead Sea Valley Soil
82(1)
4.2.2 Beach Sand
83(1)
4.2.3 Nesting Material of Birds and Animals
84(2)
4.2.3.1 Bird Nests and Feathers
84(1)
4.2.3.2 Alligator Nesting Material
85(1)
4.2.4 Coal Spoil Tips
86(1)
4.2.5 Hot Springs
86(2)
4.3 Man-Made Habitats
88(8)
4.3.1 Hay
88(1)
4.3.2 Wood Chip Piles
89(1)
4.3.3 Nuclear Reactor Effluents
89(1)
4.3.4 Manure
90(1)
4.3.5 Stored Peat
90(1)
4.3.6 Retting Guayule
91(1)
4.3.7 Stored Grains
91(1)
4.3.8 Municipal Waste
92(1)
4.3.9 Composts
93(3)
References
96(9)
Section II: Taxonomy, Biodiversity, and Classification
Chapter 5 Bioprospecting of Thermophilic Fungi
105(16)
5.1 Introduction
105(1)
5.2 Biodiversity Perspective
106(1)
5.3 Culturable Microbial Diversity
107(1)
5.4 Bioprospecting the Uncultivable
108(2)
5.5 Bioprospecting and Conservation of Fungal Diversity
110(8)
5.5.1 Microbial Strain Data Network
111(1)
5.5.2 Classification of Microorganisms on the Basis of Hazard
111(2)
5.5.3 International Depository Authorities
113(3)
5.5.3.1 Responsibilities of an IDA
113(1)
5.5.3.2 Distribution of IDAs and the Biological Material Accepted
114(1)
5.5.3.3 Guide to the Deposit of Microorganisms under the Budapest Treaty
114(1)
5.5.3.4 Code of Practice for IDAs
114(1)
5.5.3.5 Future Development of the IDA Network Worldwide
115(1)
5.5.4 Culture Transportation
116(1)
5.5.5 The Premises before Dispatch of Cultures
117(1)
5.5.6 Organizations Dealing with Microbial Cultures
118(1)
5.6 Future Perspectives
118(1)
References
119(2)
Chapter 6 Taxonomy and Molecular Phylogeny of Thermophilic Fungi
121(22)
6.1 Introduction
121(1)
6.2 Classification and Taxonomic Ranks
122(2)
6.3 What Is Phylogeny?
124(1)
6.4 Phylogenetic Analysis
125(14)
6.4.1 Molecular Phylogeny of Thermophilic Fungi
125(4)
6.4.2 Constructing Phylogenetic Trees
129(5)
6.4.3 Phylogeny and Systematics
134(1)
6.4.4 Thermophilic Fungal Genomes
135(4)
6.5 Future Prospects
139(1)
References
139(4)
Chapter 7 Biodiversity and Taxonomic Descriptions
143(42)
7.1 Introduction
143(2)
7.2 Key to the Identification of Thermophilic Fungi
145(3)
7.2.1 Zygomycota
145(1)
7.2.2 Ascomycota
145(2)
7.2.3 Deuteromycetes (Anamorphic Fungi)
147(1)
7.3 Taxonomic Descriptions of Thermophilic Taxa
148(28)
7.3.1 Zygomycetes
148(3)
7.3.2 Ascomycetes
151(15)
7.3.3 Deuteromycetes (Anamorphic Fungi)
166(10)
7.4 Nomenclatural Disagreement and Synonymies
176(4)
References
180(5)
Chapter 8 The Conflict of Name Change and Synonymies
185(24)
8.1 Introduction
185(1)
8.2 The Conflict over Name Change
186(2)
8.3 The Conflict of One Fungus, Which Name?
188(2)
8.4 Taxonomies and the Name Changes
190(8)
8.5 Classification of Uncultured Species
198(2)
8.6 Unwarranted Taxonomies
200(1)
References
201(8)
Section III: Biotechnological Applications
Chapter 9 Role of Thermophilic Fungi in Composting
209(32)
9.1 Introduction
209(2)
9.2 Bioconversion of Lignocellulosic Materials
211(2)
9.3 Physicochemical Aspects of Composts
213(4)
9.3.1 Initial C:N and C:P Ratio
213(2)
9.3.2 Moisture Content
215(1)
9.3.3 Temperature
215(1)
9.3.4 Pile Size
216(1)
9.3.5 Initial pH Value of Compost
216(1)
9.4 Ecology of Thermophilic Fungi in Mushroom Compost
217(5)
9.5 Role of Hydrolytic Enzymes of Thermophiles in Composting
222(1)
9.6 Methods of Mushroom Composting
223(4)
9.6.1 Long Method of Composting
223(2)
9.6.2 Short Method of Composting
225(1)
9.6.3 Anglo-Dutch Method
226(1)
9.6.4 INRA Method
226(1)
9.7 Growth Promotion of Agaricus bisporus by Thermophilic Fungi
227(3)
9.8 Co-Composting
230(1)
9.9 Future Prospects
231(1)
References
232(9)
Chapter 10 Bioremediation and Biomineralization
241(18)
10.1 Introduction
241(2)
10.2 Bioremediation
243(11)
10.2.1 Heavy Metals as Environmental Pollutants
243(2)
10.2.2 Metals as a Precious Component of Life
245(1)
10.2.3 Strategies to Control Heavy Metal Contamination
246(6)
10.2.3.1 Conventional Treatment Techniques
247(2)
10.2.3.2 Bioaccumulation of Heavy Metals
249(1)
10.2.3.3 Biosorption of Heavy Metals
250(2)
10.2.3.4 Immobilized Biosorbent for Bioremediation
252(1)
10.2.3.5 Recovery of Metals and Regeneration of Biomass
252(1)
10.2.4 Thermophilic Fungi in Bioremediation
252(2)
10.3 Biomineralization
254(2)
References
256(3)
Chapter 11 Biocatalysts of Thermophilic Fungi
259(52)
11.1 Introduction
259(2)
11.2 Extracellular Thermostable Enzymes Produced by Thermophilic Fungi
261(21)
11.2.1 Cellulases
262(9)
11.2.2 Amylases
271(2)
11.2.3 Glucoamylase
273(1)
11.2.4 Xylanases
273(3)
11.2.5 Lipases
276(1)
11.2.6 Proteases
277(1)
11.2.7 Pectinases
278(1)
11.2.8 Phytases
279(1)
11.2.9 Phosphatases
280(1)
11.2.10 Laccases
280(1)
11.2.11 alpha-D-Glucuronidase
281(1)
11.2.12 Cellobiose Dehydrogenase
281(1)
11.2.13 D-Glucosyltransferase
282(1)
11.2.14 DNase
282(1)
11.3 Intracellular or Cell-Associated Thermostable Enzymes Produced by Thermophilic Fungi
282(6)
11.3.1 Trehalase
283(2)
11.3.2 Invertase
285(1)
11.3.3 beta-Glycosidase
286(1)
11.3.4 ATP Sulfurylase
287(1)
11.3.5 Protein Disulfide Isomerase
288(1)
11.3.6 Lipoamide Dehydrogenase
288(1)
11.4 Bioactive Compounds from Thermophilic Fungi
288(2)
11.5 Single-Cell Protein Production
290(1)
11.6 Tools for Genetic Recombination
290(1)
11.7 Detrimental Activities
291(2)
References
293(18)
Chapter 12 Future Perspectives and Conclusions
311(10)
12.1 Diversity Perspectives
312(1)
12.2 Taxonomic Perspectives
313(2)
12.3 Phylogenetic and Genomic Perspectives
315(2)
12.4 Biotechnological Perspectives
317(1)
References
318(3)
Index 321
Dr. R K Salar, Professor in the Dept of Biotech., CDLU, Sirsa is an active scientist who has made significant contribution in the field of Biotechnology. He received Grants from DST, UGC, HSCST for R&D. He is a recipient of PDF from the Min. of Edu. Slovakia. He was awarded KACST award (Saudi Arabia) for Best Research Paper published in 3 Biotech Journal. He has published a book entitled Biotechnology: Prospects and Applications from Springer. He is a reviewer of several reputed Journals.