Atnaujinkite slapukų nuostatas

El. knyga: Thin-Film Optical Filters

(Thin Film Center Inc., Tucson, Arizona, USA)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Praise for prior editions

"an excellent treatise of thin film coatings, explaining how to produce all sorts of different filters selected according to the function they are required to play an indispensable text for every filter manufacturer and user and an excellent guide for students." Contemporary Physics

"essential reading for all those involved in the design, manufacture, and application of optical coatings" Materials World

"a must-have addition to the library of any optical thin-film theorist or practitioner" SVC News

This book is quite simply the Bible for the field of optical thin films. It gives the most complete introduction to thin film optical coatings addressed to manufacturers and users alike. This fifth edition offers a complete update on current design, manufacture, performance, and applications. New topics include absorbers and coherent perfect absorbers, photonic crystals, and metamaterials for optical coating. The author has also made substantial additions on scattering, composite materials, wire grid polarizers, laser damage, and applications.

H. Angus Macleod is President of Thin Film Center Inc., in Tucson, Arizona, and Professor Emeritus of Optical Sciences Center at the University of Arizona. His professional honors include a Gold Medal from SPIE, the Esther Hoffman Beller Medal from the Optical Society of America, and the Nathaniel H. Sugerman Memorial Award from the Society of Vacuum Coaters.
Series Preface xv
Preface to the Fifth Edition xvii
Preface to the Fourth Edition xix
Preface to the Third Edition xxi
Preface to the Second Edition xxiii
Apologia to the First Edition xxv
Author xxvii
Symbols and Abbreviations xxix
1 Introduction
1(10)
1.1 Early History
1(3)
1.2 Thin-Film Filters
4(4)
References
8(1)
Bibliography
9(2)
2 Basic Theory
11(54)
2.1 Maxwell's Equations and Plane Electromagnetic Waves
11(7)
2.1.1 Poynting Vector
16(2)
2.2 Notation
18(1)
2.3 Simple Boundary
19(17)
2.3.1 Normal Incidence in Absorption-Free Media
21(2)
2.3.2 Oblique Incidence in Absorption-Free Media
23(4)
2.3.3 Optical Admittance for Oblique Incidence
27(1)
2.3.4 Normal Incidence in Absorbing Media
28(5)
2.3.5 Oblique Incidence in Absorbing Media
33(3)
2.4 Critical Angle and Beyond
36(2)
2.5 Reflectance of a Thin Film
38(4)
2.6 Reflectance of an Assembly of Thin Films
42(2)
2.7 Reflectance, Transmittance, and Absorptance
44(2)
2.8 Units
46(1)
2.9 Summary of Important Results
47(4)
2.10 Potential Transmittance
51(2)
2.11 Theorem on the Transmittance of a Thin-Film Assembly
53(1)
2.12 Coherence
54(4)
2.13 Mixed Poynting Vector
58(2)
2.14 Incoherent Reflection at Two or More Surfaces
60(4)
References
64(1)
3 Theoretical Techniques
65(32)
3.1 Quarter- and Half-Wave Optical Thicknesses
65(1)
3.2 Admittance Loci
66(9)
3.2.1 Electric Field and Losses in the Admittance Diagram
70(5)
3.3 Vector Method
75(2)
3.4 Other Techniques
77(19)
3.4.1 Herpin Index
77(1)
3.4.2 Alternative Method of Calculation
78(2)
3.4.3 Smith's Method of Multilayer Design
80(2)
3.4.4 Smith Chart
82(2)
3.4.5 Reflection Circle Diagrams
84(4)
3.4.6 Automatic Design
88(8)
References
96(1)
4 Antireflection Coatings
97(64)
4.1 Single Layer
98(6)
4.2 Two-Layer Antireflection Coatings
104(13)
4.3 Multilayer Antireflection Coatings
117(18)
4.4 Equivalent Layers
135(10)
4.5 Antireflection Coatings for Two Zeros
145(3)
4.6 Antireflection Coatings for the Visible and the Infrared Regions
148(6)
4.7 Inhomogeneous Layers
154(3)
4.8 Further Information
157(1)
References
157(4)
5 Neutral Mirrors and Beam Splitters
161(22)
5.1 High-Reflectance Mirror Coatings
161(11)
5.1.1 Metallic Layers
161(2)
5.1.2 Protection of Metal Films
163(5)
5.1.3 Overall System Performance, Enhanced Reflectance
168(2)
5.1.4 Reflecting Coatings for the Ultraviolet Region
170(2)
5.2 Neutral Beam Splitters
172(8)
5.2.1 Beam Splitters Using Metallic Layers
173(4)
5.2.2 Beam Splitters Using Dielectric Layers
177(3)
5.3 Neutral-Density Filters
180(1)
References
181(2)
6 Multilayer High-Reflectance Coatings
183(30)
6.1 Fabry-Perot Interferometer
183(5)
6.2 Multilayer Dielectric Coatings
188(15)
6.2.1 All-Dielectric Multilayers with Extended High-Reflectance Zones
195(4)
6.2.2 Coating Uniformity Requirements
199(4)
6.3 Losses
203(5)
6.4 Reflectors with Multiple Peaks
208(4)
References
212(1)
7 Edge Filters and Notch Filters
213(38)
7.1 Thin-Film Absorption Filters
213(1)
7.2 Interference Edge Filters
214(29)
7.2.1 Quarter-Wave Stack
215(1)
7.2.2 Symmetrical Multilayers and the Herpin Index
216(3)
7.2.3 Application of the Herpin Index to the Quarter-Wave Stack
219(1)
7.2.4 Application to Edge Filters
220(2)
7.2.5 Application of the Herpin Index to Multilayers of Other than Quarter Waves
222(2)
7.2.6 Reduction of Passband Ripple
224(5)
7.2.7 Blocking
229(6)
7.2.8 Extending the Transmission Zone
235(6)
7.2.9 Reducing the Transmission Zone
241(1)
7.2.10 Edge Steepness
242(1)
7.3 Notch Filters
243(6)
References
249(2)
8 Bandpass Filters
251(86)
8.1 Broad Bandpass Filters
251(3)
8.2 Narrowband Single-Cavity Filters
254(32)
8.2.1 Metal-Dielectric Single-Cavity Filter
254(6)
8.2.2 All-Dielectric Single-Cavity Filter
260(8)
8.2.3 Losses in Single-Cavity Filters
268(5)
8.2.4 Solid-Etalon Filter
273(3)
8.2.5 Effect of Varying the Angle of Incidence
276(9)
8.2.6 Sideband Blocking
285(1)
8.3 Multiple-Cavity Filters
286(11)
8.3.1 Smith's Method
286(5)
8.3.2 Thelen's Method
291(6)
8.4 Higher Performance in Multiple-Cavity Filters
297(13)
8.4.1 Effect of Tilting
304(3)
8.4.2 Losses in Multiple-Cavity Filters
307(3)
8.4.3 Further Information
310(1)
8.5 Phase-Dispersion Filter
310(6)
8.6 Multiple-Cavity Metal-Dielectric Filters
316(15)
8.6.1 Induced Transmission Filter
317(5)
8.6.2 Examples of Filter Designs
322(9)
8.7 Measured Filter Performance
331(3)
References
334(3)
9 Tilted Dielectric Coatings
337(42)
9.1 Introduction
337(1)
9.2 Tilted Thicknesses
337(1)
9.3 Modified Admittances
338(4)
9.4 Polarizers and Analyzers
342(8)
9.4.1 Plate Polarizer
343(1)
9.4.2 Cube Polarizers
344(1)
9.4.3 Brewster Angle Polarizing Beam Splitter
344(6)
9.5 Nonpolarizing Coatings
350(8)
9.5.1 Edge Filters at Intermediate Angle of Incidence
350(4)
9.5.2 Reflecting Coatings at Very High Angles of Incidence
354(2)
9.5.3 Edge Filters at Very High Angles of Incidence
356(2)
9.6 Antireflection Coatings
358(5)
9.6.1 p-Polarization Only
358(1)
9.6.2 s-Polarization Only
359(1)
9.6.3 s- and p-Polarizations Together
360(3)
9.7 Retarders
363(11)
9.7.1 Ellipsometric Parameters and Relative Retardation
363(1)
9.7.2 Series of Coated Surfaces
364(1)
9.7.3 Retarders
365(1)
9.7.4 Simple Retarders
366(3)
9.7.5 Multilayer Retarders at One Wavelength
369(2)
9.7.6 Multilayer Retarders for a Range of Wavelengths
371(3)
9.8 Optical Tunnel Filters
374(3)
References
377(2)
10 More on Tilted Coatings
379(24)
10.1 Introduction
379(1)
10.2 Modified Admittances and the Tilted Admittance Diagram
379(3)
10.3 Application of the Admittance Diagram
382(12)
10.4 Alternative Approach
394(4)
10.5 Calculated Values for Silver
398(3)
References
401(2)
11 Other Topics: From Rugate Filters to Photonic Crystals
403(54)
11.1 Rugate Filters
403(11)
11.1.1 Apodization
406(1)
11.1.2 Discrete Layer Replacements
406(7)
11.1.3 Fourier Technique
413(1)
11.2 Ultrafast Coatings
414(11)
11.3 Glare Suppression Filters and Coatings
425(3)
11.4 Some Coatings Involving Metal Layers
428(8)
11.4.1 Electrode Films for Schottky Barrier Photodiodes
428(2)
11.4.2 Spectrally Selective Coatings for Photothermal Solar Energy Conversion
430(4)
11.4.3 Heat-Reflecting Metal-Dielectric Coatings
434(2)
11.5 Gain in Optical Coatings
436(9)
11.5.1 Oblique Incidence including Beyond Critical
440(3)
11.5.2 Evanescent Gain
443(2)
11.6 Perfect Absorbers
445(4)
11.7 Photonic Crystals
449(5)
11.7.1 What Is a Photonic Crystal?
449(1)
11.7.2 Two-Dimensional Photonic Crystals
450(1)
11.7.3 One-Dimensional Photonic Crystals
450(4)
References
454(3)
12 Color in Optical Coatings
457(14)
12.1 Introduction
457(1)
12.2 Color Definition
457(6)
12.3 1964 Supplementary Colorimetric Observer
463(1)
12.4 Metamerism
463(1)
12.5 Other Color Spaces
464(1)
12.6 Hue and Chroma
465(1)
12.7 Brightness and Optimal Stimuli
466(1)
12.8 Colored Fringes
467(3)
References
470(1)
13 Production Methods
471(64)
13.1 Deposition of Thin Films
471(22)
13.1.1 A Word about Pressure Units
472(1)
13.1.2 Thermal Evaporation
472(8)
13.1.3 Energetic Processes
480(10)
13.1.4 Other Processes
490(3)
13.2 Baking
493(1)
13.3 A Word about Materials
494(1)
13.4 Uniformity
494(7)
13.4.1 Flat Plate
495(1)
13.4.2 Spherical Surface
496(1)
13.4.3 Rotating Substrates
497(3)
13.4.4 Use of Masks
500(1)
13.5 Substrate Preparation
501(2)
13.6 Thickness Monitoring and Control
503(11)
13.6.1 Optical Monitoring Techniques
504(7)
13.6.2 Quartz Crystal Monitor
511(2)
13.6.3 Monitoring by Deposition Time
513(1)
13.7 Tolerances
514(10)
13.8 Performance Envelopes
524(3)
13.9 Reverse Engineering
527(2)
References
529(6)
14 Material Properties
535(58)
14.1 Properties of Common Materials
535(9)
14.2 Measurement of the Optical Properties
544(16)
14.3 Pitfalls in Optical Constant Extraction
560(4)
14.4 Measurement of the Mechanical Properties
564(6)
14.5 Annealing
570(3)
14.6 Toxicity
573(1)
14.7 Microstructure and Thin-Film Behavior
574(12)
References
586(7)
15 Composite, Birefringent, and Metamaterials
593(14)
15.1 Packing Density
593(1)
15.2 Composite Material Models
594(3)
15.3 Birefringent Materials
597(1)
15.4 Metallic Grid Polarizers
598(1)
15.5 Metamaterials
599(5)
References
604(3)
16 Some Coating Properties Important in Systems
607(28)
16.1 Measurements and Calculations
607(1)
16.2 Oblique Incidence and Polarization
608(10)
16.2.1 Polarization Maintenance
610(1)
16.2.2 Roof Prism Problems
610(3)
16.2.3 Cone Response at Oblique Incidence
613(1)
16.2.4 Cone Response of Thin-Film Polarizers
613(1)
16.2.5 Small Spot Illumination
614(4)
16.3 Surface Figure and Uniformity
618(1)
16.4 Contamination Sensitivity
618(5)
16.5 Scattering
623(5)
16.6 Temperature Shifts
628(1)
16.7 Stray Light
629(1)
16.8 Laser Damage
630(2)
References
632(3)
17 Specification of Filters and Coatings
635(10)
17.1 Optical Properties
635(5)
17.1.1 Performance Specification
635(2)
17.1.2 Manufacturing Specification
637(1)
17.1.3 Test Specification
638(2)
17.2 Physical Properties
640(4)
17.2.1 Abrasion Resistance
640(2)
17.2.2 Adhesion
642(1)
17.2.3 Environmental Resistance
643(1)
References
644(1)
18 Characteristics of Thin-Film Dielectric Materials
645(10)
References
652(3)
Index 655
H. Angus Macleod is President of Thin Film Center Inc., in Tucson, Arizona, and Professor Emeritus of Optical Sciences Center at the University of Arizona. Dr. Macleod is a graduate of Glasgow University and has been granted honorary doctoral degrees from the Council for National Academic Awards (London) and the University of Aix-Marseille in France. He is the author of over 200 academic publications, and has taught courses on optical topics all over the world, with class audiences ranging from one person to over two hundred people. He specializes in teaching techniques for understanding and logical thinking that avoid complicated theory without oversimplification.

Dr. Macleod is the recipient of numerous professional honors, including the Gold Medal (1987) from SPIE, the Esther Hoffman Beller Medal (1997) from the Optical Society of America, the Nathaniel H. Sugerman Memorial Award (2002) from the Society of Vacuum Coaters, and the Senator Award (2008) from the European Vacuum Coaters.