Atnaujinkite slapukų nuostatas

El. knyga: Thirty-three Miniatures

4.47/5 (34 ratings by Goodreads)
  • Formatas: 182 pages
  • Serija: Student Mathematical Library
  • Išleidimo metai: 30-Jun-2010
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470416362
  • Formatas: 182 pages
  • Serija: Student Mathematical Library
  • Išleidimo metai: 30-Jun-2010
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470416362

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lovasz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for seminar presentations. Table of Contents: Fibonacci numbers, quickly; Fibonacci numbers, the formula; The clubs of Oddtown; Same-size intersections; Error-correcting codes; Odd distances; Are these distances Euclidean ; Packing complete bipartite graphs; Equiangular lines; Where is the triangle ; Checking matrix multiplication; Tiling a rectangle by squares; Three Petersens are not enough; Petersen, Hoffman-Singleton, and maybe 57; Only two distances; Covering a cube minus one vertex; Medium-size intersection is hard to avoid; On the difficulty of reducing the diameter; The end of the small coins; Walking in the yard; Counting spanning trees; In how many ways can a man tile a board ; More bricks--more walls ; Perfect matchings and determinants; Turning a ladder over a finite field; Counting compositions; Is it associative ; The secret agent and umbrella; Shannon capacity of the union: a tale of two fields; Equilateral sets; Cutting cheaply using eigenvectors; Rotating the cube; Set pairs and exterior products; Index. (STML/53)

Recenzijos

Finding examples of "linear algebra in action" that are both accessible and convincing is difficult. Thirty-three Miniatures is an attempt to present some usable examples. . . . For me, the biggest impact of the book came from noticing the tools that are used. Many linear algebra textbooks, including the one I use, delay discussion of inner products and transpose matrices till later in the course, which sometimes means they don't get discussed at all. Seeing how often the transpose matrix shows up in Matousek's miniatures made me realize space must be made for it. Similarly, the theorem relating the rank of the product of two matrices to the ranks of the factors plays a big role here. Most linear algebra instructors would benefit from this kind of insight. . . . Thirty-three Miniatures would be an excellent book for an informal seminar offered to students after their first linear algebra course. It may also be the germ of many interesting undergraduate talks. And it's fun as well." - Fernando Q. Gouvźa, MAA Reviews

"[ This book] is an excellent collection of clever applications of linear algebra to various areas of (primarily) discrete/combinatiorial mathematics. ... The style of exposition is very lively, with fairly standard usage of terminologies and notations. ... Highly recommended." - Choice

Preface v
Notation ix
Miniature 1 Fibonacci Numbers, Quickly
1(2)
Miniature 2 Fibonacci Numbers, the Formula
3(2)
Miniature 3 The Clubs of Oddtown
5(2)
Miniature 4 Same-Size Intersections
7(4)
Miniature 5 Error-Correcting Codes
11(6)
Miniature 6 Odd Distances
17(2)
Miniature 7 Are These Distances Euclidean?
19(4)
Miniature 8 Packing Complete Bipartite Graphs
23(4)
Miniature 9 Equiangular Lines
27(4)
Miniature 10 Where is the Triangle?
31(4)
Miniature 11 Checking Matrix Multiplication
35(4)
Miniature 12 Tiling a Rectangle by Squares
39(2)
Miniature 13 Three Petersens are not Enough
41(4)
Miniature 14 Petersen, Hoffman-Singleton, and Maybe 57
45(6)
Miniature 15 Only Two Distances
51(4)
Miniature 16 Covering a Cube Minus One Vertex
55(2)
Miniature 17 Medium-Size Intersection is Hard to Avoid
57(4)
Miniature 18 On the Difficulty of Reducing the Diameter
61(6)
Miniature 19 The End of the Small Coins
67(4)
Miniature 20 Walking in the Yard
71(6)
Miniature 21 Counting Spanning Trees
77(8)
Miniature 22 In How Many Ways Can a Man Tile a Board?
85(12)
Miniature 23 More Bricks---More Walls?
97(10)
Miniature 24 Perfect Matchings and Determinants
107(6)
Miniature 25 Turning a Ladder Over a Finite Field
113(6)
Miniature 26 Counting Compositions
119(6)
Miniature 27 Is it Associative?
125(6)
Miniature 28 The Secret Agent and the Umbrella
131(8)
Miniature 29 Shannon Capacity of the Union: A Tale of Two Fields
139(8)
Miniature 30 Equilateral Sets
147(6)
Miniature 31 Cutting Cheaply Using Eigenvectors
153(10)
Miniature 32 Rotating the Cube
163(8)
Miniature 33 Set Pairs and Exterior Products
171(8)
Index 179
Jiķ Matouek, Charles University, Prague, Czech Republic