neleidžiama
neleidžiama
Skaitmeninių teisių valdymas (DRM)
Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).
Reikalinga programinė įranga
Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)
Norint skaityti šią el. knygą asmeniniame arba Mac kompiuteryje, Jums reikalinga Adobe Digital Editions (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas Adobe Reader, kurią tikriausiai jau turite savo kompiuteryje.)
Negalite skaityti šios el. knygos naudodami Amazon Kindle.
Preface
Author Biographies
Part 1: Getting Started
1. Setting Up Your Environment
2. Introduction to Tidy Finance
Part 2: Financial Data
3. Accessing and Managing Financial Data
4. WRDS, CRSP, and Compustat
5. TRACE and FISD
6. Other Data Providers
Part 3: Asset Pricing
7. Beta Estimation
8. Univariate Portfolio Sorts
9. Size Sorts and p-Hacking
10. Value and Bivariate Sorts
11. Replicating Fama and French Factors
12. Fama-MacBeth Regressions
Part 4: Modeling and Machine Learning
13. Fixed Effects and Clustered Standard Errors
14. Difference in Differences
15. Factor Selection via Machine Learning
16. Option Pricing via Machine Learning
Part 5: Portfolio Optimization
17. Parametric Portfolio Policies
18. Constrained Optimization and Backtesting
Appendices
A. Colophon
B. Proofs
C. WRDS Dummy Data
D. Clean Enhanced TRACE with Python
E. Cover Image
Bibliography
Index