Preface |
|
xiii | |
1 Introduction |
|
1 | (24) |
|
|
1 | (4) |
|
1.2 Cycles in Time Series Data |
|
|
5 | (3) |
|
1.3 Spanning and Scaling Time Series |
|
|
8 | (3) |
|
1.4 Time Series Regression and Autoregression |
|
|
11 | (5) |
|
|
16 | (2) |
|
|
18 | (7) |
2 The Probabilistic Structure of Time Series |
|
25 | (28) |
|
|
25 | (4) |
|
2.2 Time Series and Stochastic Processes |
|
|
29 | (3) |
|
2.3 Marginals and Strict Stationarity |
|
|
32 | (3) |
|
2.4 Autocovariance and Weak Stationarity |
|
|
35 | (5) |
|
2.5 Illustrations of Stochastic Processes |
|
|
40 | (4) |
|
2.6 Three Examples of White Noise |
|
|
44 | (2) |
|
|
46 | (1) |
|
|
47 | (6) |
3 Trends, Seasonality, and Filtering |
|
53 | (40) |
|
3.1 Nonparametric Smoothing |
|
|
53 | (3) |
|
3.2 Linear Filters and Linear Time Series |
|
|
56 | (2) |
|
3.3 Some Common Types of Filters |
|
|
58 | (4) |
|
|
62 | (7) |
|
|
69 | (7) |
|
3.6 Trend and Seasonality Together |
|
|
76 | (4) |
|
|
80 | (4) |
|
|
84 | (2) |
|
|
86 | (7) |
4 The Geometry of Random Variables |
|
93 | (36) |
|
4.1 Vector Space Geometry and Inner Products |
|
|
93 | (4) |
|
4.2 L2 (Ω, P, F): The Space of Random Variables with Finite Second Moment |
|
|
97 | (1) |
|
4.3 Hilbert Space Geometry [ *] |
|
|
98 | (3) |
|
4.4 Projection in Hilbert Space |
|
|
101 | (3) |
|
4.5 Prediction of Time Series |
|
|
104 | (4) |
|
4.6 Linear Prediction of Time Series |
|
|
108 | (3) |
|
4.7 Orthonormal Sets and Infinite Projection |
|
|
111 | (2) |
|
4.8 Projection of Signals [ *] |
|
|
113 | (6) |
|
|
119 | (1) |
|
|
120 | (9) |
5 ARMA Models with White Noise Residuals |
|
129 | (40) |
|
5.1 Definition of the ARMA Recursion |
|
|
129 | (3) |
|
|
132 | (5) |
|
5.3 Stationarity and Causality of the AR(1) |
|
|
137 | (3) |
|
5.4 Causality of ARMA Processes |
|
|
140 | (4) |
|
5.5 Invertibility of ARMA Processes |
|
|
144 | (3) |
|
5.6 The Autocovariance Generating Function |
|
|
147 | (5) |
|
5.7 Computing ARMA Autocovariances via the MA Representation |
|
|
152 | (3) |
|
5.8 Recursive Computation of ARMA Autocovariances |
|
|
155 | (4) |
|
|
159 | (1) |
|
|
160 | (9) |
6 Time Series in the Frequency Domain |
|
169 | (38) |
|
|
169 | (6) |
|
6.2 Filtering in the Frequency Domain |
|
|
175 | (6) |
|
6.3 Inverse Autocovariances |
|
|
181 | (4) |
|
6.4 Spectral Representation of Toeplitz Covariance Matrices |
|
|
185 | (4) |
|
6.5 Partial Autocorrelations |
|
|
189 | (4) |
|
6.6 Application to Model Identification |
|
|
193 | (3) |
|
|
196 | (1) |
|
|
197 | (10) |
7 The Spectral Representation [ *] |
|
207 | (40) |
|
|
207 | (5) |
|
7.2 The Discrete Fourier Transform |
|
|
212 | (3) |
|
7.3 The Spectral Representation |
|
|
215 | (5) |
|
|
220 | (5) |
|
|
225 | (4) |
|
7.6 The Wold Decomposition |
|
|
229 | (3) |
|
7.7 Spectral Approximation and the Cepstrum |
|
|
232 | (5) |
|
|
237 | (2) |
|
|
239 | (8) |
8 Information and Entropy [ *] |
|
247 | (32) |
|
|
247 | (4) |
|
8.2 Events and Information Sets |
|
|
251 | (3) |
|
8.3 Maximum Entropy Distributions |
|
|
254 | (4) |
|
8.4 Entropy in Time Series |
|
|
258 | (4) |
|
|
262 | (3) |
|
8.6 Modeling Time Series via Entropy |
|
|
265 | (3) |
|
8.7 Relative Entropy and Kullback-Leibler Discrepancy |
|
|
268 | (3) |
|
|
271 | (1) |
|
|
272 | (7) |
9 Statistical Estimation |
|
279 | (46) |
|
9.1 Weak Correlation and Weak Dependence |
|
|
279 | (2) |
|
|
281 | (5) |
|
9.3 CLT for Weakly Dependent Time Series [ *] |
|
|
286 | (2) |
|
9.4 Estimating Serial Correlation |
|
|
288 | (3) |
|
9.5 The Sample Autocovariance |
|
|
291 | (4) |
|
|
295 | (6) |
|
9.7 Statistical Properties of the Periodogram |
|
|
301 | (5) |
|
9.8 Spectral Density Estimation |
|
|
306 | (5) |
|
9.9 Refinements of Spectral Analysis |
|
|
311 | (5) |
|
|
316 | (2) |
|
|
318 | (7) |
10 Fitting Time Series Models |
|
325 | (60) |
|
10.1 MA Model Identification |
|
|
325 | (3) |
|
10.2 EXP Model Identification [ *] |
|
|
328 | (3) |
|
10.3 AR Model Identification |
|
|
331 | (5) |
|
10.4 Optimal Prediction Estimators |
|
|
336 | (5) |
|
10.5 Relative Entropy Minimization |
|
|
341 | (4) |
|
10.6 Computation of Optimal Predictors |
|
|
345 | (4) |
|
10.7 Computation of the Gaussian Likelihood |
|
|
349 | (5) |
|
|
354 | (5) |
|
10.9 Model Parsimony and Information Criteria |
|
|
359 | (2) |
|
|
361 | (5) |
|
10.11 Iterative Forecasting |
|
|
366 | (4) |
|
10.12 Applications to Imputation and Signal Extraction |
|
|
370 | (3) |
|
|
373 | (3) |
|
|
376 | (9) |
11 Nonlinear Time Series Analysis |
|
385 | (30) |
|
11.1 Types of Nonlinearity |
|
|
385 | (4) |
|
11.2 The Generalized Linear Process [ *] |
|
|
389 | (3) |
|
|
392 | (4) |
|
|
396 | (4) |
|
11.5 The Bi-spectral Density |
|
|
400 | (4) |
|
11.6 Volatility Filtering |
|
|
404 | (5) |
|
|
409 | (2) |
|
|
411 | (4) |
12 The Bootstrap |
|
415 | (52) |
|
12.1 Sampling Distributions of Statistics |
|
|
415 | (3) |
|
12.2 Parameter Functionals and Monte Carlo |
|
|
418 | (5) |
|
12.3 The Plug-In Principle and the Bootstrap |
|
|
423 | (4) |
|
12.4 Model-Based Bootstrap and Residuals |
|
|
427 | (6) |
|
|
433 | (6) |
|
12.6 Time Frequency Toggle Bootstrap |
|
|
439 | (5) |
|
|
444 | (6) |
|
12.8 Block Bootstrap Methods |
|
|
450 | (8) |
|
|
458 | (2) |
|
|
460 | (7) |
A Probability |
|
467 | (20) |
|
|
467 | (3) |
|
|
470 | (4) |
|
A.3 Expectation and Variance |
|
|
474 | (4) |
|
|
478 | (4) |
|
A.5 The Normal Distribution |
|
|
482 | (1) |
|
|
483 | (4) |
B Mathematical Statistics |
|
487 | (20) |
|
|
487 | (2) |
|
B.2 Sampling Distributions |
|
|
489 | (2) |
|
|
491 | (2) |
|
|
493 | (2) |
|
|
495 | (3) |
|
|
498 | (4) |
|
|
502 | (5) |
C Asymptotics |
|
507 | (22) |
|
C.1 Convergence Topologies |
|
|
507 | (3) |
|
C.2 Convergence Results for Random Variables |
|
|
510 | (4) |
|
C.3 Asymptotic Distributions |
|
|
514 | (5) |
|
C.4 Central Limit Theory for Time Series |
|
|
519 | (9) |
|
|
528 | (1) |
D Fourier Series |
|
529 | (6) |
|
D.1 Complex Random Variables |
|
|
529 | (2) |
|
D.2 Trigonometric Polynomials |
|
|
531 | (4) |
E Stieltjes Integration |
|
535 | (12) |
|
E.1 Deterministic Integration |
|
|
535 | (3) |
|
E.2 Stochastic Integration |
|
|
538 | (9) |
Index |
|
547 | |