Atnaujinkite slapukų nuostatas

El. knyga: Tissue Engineering

Edited by (KNAW (The Royal Netherlands Academy of Arts and Sciences), The Netherlands), Edited by (Professor, Department of Biomedical Engineering, The Netherlands)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 11-Nov-2022
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780323851343
  • Formatas: EPUB+DRM
  • Išleidimo metai: 11-Nov-2022
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780323851343

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Tissue Engineering, Third Edition provides a completely revised release with sections focusing on Fundamentals of Tissue Engineering and Tissue Engineering of Selected Organs and Tissues. Key chapters are updated with the latest discoveries, including coverage of new areas (skeletal TE, ophthalmology TE, immunomodulatory biomaterials and immune systems engineering). The book is written in a scientific language that is easily understood by undergraduate and graduate students in basic biological sciences, bioengineering and basic medical sciences, and researchers interested in learning about this fast-growing field.
  • Presents a clear structure of chapters that is aimed at those new to the field
  • Includes new chapters on immune systems engineering, skeletal tissue engineering (skeletal muscle, tendon, and ligament) eye, cornea and ophthalmology tissue engineering
  • Includes applied clinical cases studies that illustrate basic science applications
Contributors xv
Preface xxi
Chapter 1 An introduction to tissue engineering; the topic and the book
1(12)
Jorge Alfredo Uquiuas
Lorenzo Moroni
Jan de Boer
1.1 Learning objectives
1(1)
1.2 What inspired you to pick up this book?
1(1)
1.3 What is tissue engineering about?
2(1)
1.4 Tissue engineering's origin and progression overtime
3(1)
1.5 Tissue engineering's limitations and promises
4(3)
1.6 The future of tissue engineering
7(1)
1.7 Tissue engineering and you
8(1)
1.8 How to use this book? A guide for students and teachers
9(1)
1.9 How to use the chapters?
10(1)
1.10 References
11(2)
Chapter 2 Stem cells
13(58)
Mark F. Pittenger
Candace L. Kerr
2.1 Learning objectives
13(1)
2.2 Introduction
13(2)
2.3 What defines a stem cell? Self-renewal, proliferation, and differentiation
15(1)
2.4 Self-renewal
16(1)
2.5 Stem cell proliferation
16(3)
2.6 Stem cell differentiation
19(1)
2.7 Stem cell quiescence and activation
20(1)
2.8 Cell death is normal--apoptosis, autophagy, necrosis, and necroptosis
21(3)
2.9 Characterization of stem cells--protein expression
24(2)
2.10 Characterization of stem cells--RNA analysis by RT-PCR, microarray, and RNA-sequencing
26(5)
2.11 Characterization of stem cells--cell differentiation
31(1)
2.12 Stem cell signaling--the Wnt and B-catenin pathway
31(2)
2.13 Hematopoietic stem cells
33(2)
2.14 Mesenchymal stem cells
35(4)
2.15 Skin stem cells
39(2)
2.16 Lgr5+ stem cells of the intestine
41(3)
2.17 Central nervous system stem cells
44(1)
2.18 Induced pluripotent stem cells--iPS cells
44(6)
2.19 Natural pluripotent and embryonic stem cells
50(4)
2.20 Organoids, exosomes, and extracts from stem cells
54(3)
2.21 Stem cell mechanobiology. stretch and strain
57(1)
2.22 Future perspective
57(1)
2.23 The dark side: cancer stem cells
57(7)
2.24 Recommended literature
64(1)
2.25 Assessment of your knowledge
65(3)
2.26 Glossary
68(1)
2.27 Further reading
69(2)
Chapter 3 Tissue formation during embryogenesis
71(38)
Marcel Karperien
Bernard A.J. Roelen
Robert Passier
Susan Gibbs
3.1 Learning objectives
71(1)
3.2 Introduction
71(7)
3.3 Cardiac development
78(3)
3.4 Blood vessel development
81(4)
3.5 Development of peripheral nerve tissue
85(2)
3.6 Embryonic skin development
87(8)
3.7 Bone development
95(9)
3.8 Recommended literature
104(1)
3.9 Assessment of your knowledge
105(2)
3.10 Glossary
107(2)
Chapter 4 Cellular signaling
109(28)
Vanessa LaPointe
Kristopher A. Kilian
4.1 Learning objectives
109(1)
4.2 Paradigm of cellular signaling
109(2)
4.3 Signal initiation
111(2)
4.4 Signal transduction
113(9)
4.5 Gene activation
122(4)
4.6 Variations on a theme
126(1)
4.7 Future perspective
126(4)
4.8 Recommended literature
130(1)
4.9 Assessment of your knowledge
131(2)
4.10 Glossary
133(1)
4.11 References
134(3)
Chapter 5 Extracellular matrix as a bioscaffold for tissue engineering
137(36)
Brian M. Sicari
Ricardo Londono
Jenna L. Dziki
Stephen F. Badylak
5.1 Learning objectives
137(1)
5.2 Introduction
137(3)
5.3 Native extracellular matrix
140(5)
5.4 ECM scaffold preparation
145(3)
5.5 Constructive tissue remodeling
148(5)
5.6 Clinical translation of ECM bioscaffolds
153(4)
5.7 Commercially available scaffolds composed of ECM
157(1)
5.8 Future perspective
157(7)
5.9 Recommended literature
164(1)
5.10 Assessment of your knowledge
164(3)
5.11 Glossary
167(1)
5.12 References
168(5)
Chapter 6 Synthetic biomaterials
173(40)
Ana A. Aldana
Jurica Bauer
Matthew B. Baker
6.1 Learning objectives
173(1)
6.2 Introduction
173(3)
6.3 Biomaterials and synthetic chemistry: a molecular view
176(9)
6.4 The extracellular matrix: a chemical view
185(3)
6.5 Rational design
188(9)
6.6 Future developments
197(2)
6.7 Case study: vascularization
199(7)
6.8 Recommended literature
206(1)
6.9 Assessment of your knowledge
206(2)
6.10 Glossary
208(2)
6.11 References
210(3)
Chapter 7 Degradation of biomaterials
213(48)
Clara Grace Hynes
Emily Morra
Pamela Walsh
Fraser Buchanan
7.1 Learning objectives
213(1)
7.2 Introduction
213(1)
7.3 Bioceramics and glasses
214(10)
7.4 Biodegradable polymers
224(13)
7.5 Biodegradable metals
237(9)
7.6 Future perspective
246(6)
7.7 Recommended literature
252(1)
7.8 Assessment of your knowledge
252(3)
7.9 Glossary
255(1)
7.10 References
255(6)
Chapter 8 Cell-material interactions
261(32)
Hannah Donnelly
Steven Vermeulen
Monica Tsimbouri
Matthew J. Dalby
8.1 Learning objectives
261(1)
8.2 Introduction
261(8)
8.3 Surface chemistry
269(4)
8.4 Material mechanics (stiffness)
273(5)
8.5 Topography
278(4)
8.6 Future perspective
282(5)
8.7 Recommended literature
287(1)
8.8 Assessment of your knowledge
287(2)
8.9 Glossary
289(1)
8.10 References
290(3)
Chapter 9 Biomaterials discovery: experimental and computational approaches
293(36)
Andrew L. Hook
Aurelie Carlier
Morgan R. Alexander
David A. Winkler
9.1 Learning objectives
293(1)
9.2 Introduction
293(1)
9.3 The challenges of biomaterials discovery
294(1)
9.4 Approaches to materials discovery
295(2)
9.5 Experimental high throughput materials discovery
297(9)
9.6 Computational materials discovery
306(13)
9.7 Future perspective
319(4)
9.8 Recommended literature
323(1)
9.9 Assessment of your knowledge
324(3)
9.10 Glossary
327(2)
Chapter 10 Microfabrication technology in tissue engineering
329(26)
Minghao Nie
Roman Truckenmuller
Shoji Takeuchi
10.1 Learning objectives
329(1)
10.2 Introduction
329(2)
10.3 Microfabrication techniques in tissue engineering
331(13)
10.4 Future perspective
344(4)
10.5 Recommended literature
348(1)
10.6 Assessment of your knowledge
348(3)
10.7 Glossary
351(1)
10.8 References
351(4)
Chapter 11 Scaffold design and fabrication
355(32)
Dietmar W. Hutmacher
Biranche Tandon
Paul D. Dalton
11.1 Learning objectives
355(1)
11.2 Introduction
355(3)
11.3 Scaffold design
358(3)
11.4 Classical scaffold fabrication techniques
361(1)
11.5 Electrospinning
362(3)
11.6 Additive manufacturing
365(5)
11.7 Hybrid fabrication
370(1)
11.8 Clinical translation of scaffold guided tissue engineering
370(5)
11.9 Future perspective
375(4)
11.10 Recommended literature
379(1)
11.11 Assessment of your knowledge
380(2)
11.12 Glossary
382(1)
11.13 References
383(4)
Chapter 12 Controlled release strategies in tissue engineering
387(44)
Jeffrey J. Rice
Mikael M. Martino
Sharan Bobbala
Evan A. Scott
Jeffrey A. Hubbell
12.1 Learning objectives
387(1)
12.2 Introduction
387(9)
12.3 Physical mixtures of bioactive factors within matrices
396(4)
12.4 Bioactive factors entrapped within gel matrices
400(5)
12.5 Bioactive factors entrapped within hydrophobic scaffolds or microparticles
405(4)
12.6 Bioactive factors bound to affinity sites within matrices
409(3)
12.7 Bioactive factors covalently bound to matrices
412(1)
12.8 Matrices used for immunomodulation
413(8)
12.9 Recommended literature
421(1)
12.10 Assessment of your knowledge
421(3)
12.11 Glossary
424(1)
12.12 References
425(6)
Chapter 13 Bioreactors: enabling technologies for research and manufacturing
431(26)
Dominik Egger
Sabrina Nebet
Marius Gensler
Sebastian Kreß
Jan Hansmann
Cornelia Kasper
13.1 Learning objectives
431(1)
13.2 Introduction
431(1)
13.3 Basic requirements
432(3)
13.4 Mimicking physiological culture conditions
435(4)
13.5 Bioreactors for cell expansion and cell-based products
439(5)
13.6 Bioreactors for tissue engineering
444(5)
13.7 Future perspective
449(3)
13.8 Recommended Literature
452(1)
13.9 Assessment of your knowledge
452(2)
13.10 Glossary
454(1)
13.11 References
455(2)
Chapter 14 Strategies to promote vascularization, survival, and functionality of engineered tissues
457(34)
Miriam Filippi
Thomas Spater
Marietta Herrmann
Matthias W. Laschke
Arnaud Scherberich
Sophie Verrier
14.1 Learning objectives
457(1)
14.2 Introduction
457(4)
14.3 Strategies to improve vascular ingrowth into TE constructs
461(4)
14.4 Strategies to improve vascular ingrowth into TE constructs--biological features
465(3)
14.5 Strategies to promote neo-vascularization
468(4)
14.6 In vivo models
472(5)
14.7 Translation into clinics
477(5)
14.8 Recommended literature
482(1)
14.9 Assessment of your knowledge
483(4)
14.10 Glossary
487(4)
Chapter 15 Skin tissue engineering and keratinocyte stem cell therapy
491(42)
Rosalind Hannen
John Connelly
Simon Myers
Nkemcho Ojeh
15.1 Learning objectives
491(1)
15.2 Introduction
491(3)
15.3 Structure and function of the epidermis
494(4)
15.4 Structure and function of the dermis
498(1)
15.5 Epidermal and hair follicle stem cells of the skin
499(1)
15.6 In vitro keratinocyte culture
500(4)
15.7 Cultured three-dimensional skin models
504(2)
15.8 Immunogenicity with allogeneic and biosynthetic materials
506(1)
15.9 Development of in vivo somatic keratinocyte stem cell grafting
506(1)
15.10 Poor keratinocyte "take"
507(1)
15.11 Skin tissue engineering
508(10)
15.12 The use of adult stem cells in tissue-engineered skin
518(2)
15.13 Future perspective
520(5)
15.14 Recommended literature
525(1)
15.15 Assessment of your knowledge
525(3)
15.16 Glossary
528(2)
15.17 References
530(3)
Chapter 16 Cartilage and bone regeneration
533(52)
Anders Lindahl
Mats Brittberg
David Gibbs
Jonathan I. Dawson
Janos Kanczler
Cameron Black
Rahul Tare
Richard O.C. Oreffo
16.1 Learning objectives
533(1)
16.2 Introduction: cartilage
533(1)
16.3 Cellular structures and matrix composition of hyaline cartilage
534(1)
16.4 Collagen
535(1)
16.5 Proteoglycans
536(1)
16.6 The chondrocyte
536(2)
16.7 Stem cells in cartilage and proliferation of chondrocytes
538(1)
16.8 Pathophysiology of cartilage lesion development
539(1)
16.9 Artificial induction of cartilage repair
540(1)
16.10 Rationale for cell implantation
541(2)
16.11 Cartilage specimens for implantation
543(1)
16.12 Cell seeding density
543(1)
16.13 What type of chondrogenic cells is ideal for cartilage engineering?
543(1)
16.14 Allogeneic versus autologous cells
544(1)
16.15 Articular chondrocytes versus other cells
544(1)
16.16 Embryonic stem cells and induced pluripotent stem cells
544(1)
16.17 Xenograft cells
545(1)
16.18 Direct isolation of tissue
545(1)
16.19 Scaffolds in cartilage tissue engineering
545(3)
16.20 Bioreactors in cartilage tissue engineering
548(1)
16.21 Growth factors that stimulate chondrogenesis
548(1)
16.22 Future developments in cartilage biology
549(1)
16.23 Introduction: bone--basic bone biology: structure, function, and cells
549(5)
16.24 Intramembranous and endochondral bone formation
554(1)
16.25 Fracture repair
554(1)
16.26 Critical size defect
555(1)
16.27 Skeletal stem cells
556(3)
16.28 Expansion and differentiation
559(1)
16.29 Growth factors for bone repair
559(1)
16.30 Scaffold biocompatibility
560(4)
16.31 The function of the vasculature in skeletal regeneration
564(2)
16.32 Animal models in bone tissue engineering
566(1)
16.33 Clinical experience in bone tissue engineering
566(4)
16.34 Future perspectives for bone regeneration
570(5)
16.35 Assessment of your knowledge
575(2)
16.36 Glossary
577(1)
16.37 References
577(5)
16.38 Further reading
582(3)
Chapter 17 Tissue engineering of the nervous system
585(44)
Paul D. Dalton
Kelly L. O'Neill
Ana Paula Pego
Giles W. Plant
David R. Nisbet
Martin Oudega
Gary A. Brook
Alan R. Harvey
17.1 Learning objectives
585(1)
17.2 Introduction
586(1)
17.3 Peripheral nerve
586(10)
17.4 CNS: spinal cord
596(10)
17.5 CNS: brain
606(3)
17.6 CNS: optic nerve
609(2)
17.7 CNS: retina
611(2)
17.8 Future perspective
613(5)
17.9 Recommended literature
618(1)
17.10 Assessment of your knowledge
618(3)
17.11 Glossary
621(1)
17.12 References
622(7)
Chapter 18 Principles of cardiovascular tissue engineering
629(32)
Saray Chen
Smadar Cohen
18.1 Learning objectives
629(1)
18.2 Introduction
629(1)
18.3 Heart structure, disease, and regeneration
630(5)
18.4 Cell sources for cardiovascular tissue engineering and regeneration
635(1)
18.5 Biomaterials--polymers, scaffolds, and basic design criteria
636(1)
18.6 Biomaterials as vehicles for stem cells or bioactive molecule delivery after Ml
637(3)
18.7 Bioengineering of cardiac patches, in vitro
640(6)
18.8 Vascularization of cardiac patches
646(1)
18.9 Three-dimensional bioprinting of vascularized tissues and components of heart
647(4)
18.10 Challenges for clinical application
651(1)
18.11 Future perspective
651(5)
18.12 Recommended literature
656(1)
18.13 Assessment of your knowledge
656(2)
18.14 Glossary
658(1)
18.15 References
659(2)
Chapter 19 Tissue engineering of organ systems
661(28)
Adam M. Jorgensen
Anthony Atala
19.1 Learning objectives
661(1)
19.2 Introduction
661(2)
19.3 Urogenital tissue engineering
663(4)
19.4 Reproductive organs
667(3)
19.5 Liver tissue engineering
670(3)
19.6 Gastrointestinal tissue engineering
673(2)
19.7 Pancreas tissue engineering
675(3)
19.8 Lung tissue engineering
678(1)
19.9 Future perspective
679(5)
19.10 Recommend literature
684(1)
19.11 Assessment of your knowledge
684(2)
19.12 Glossary
686(1)
19.13 References
687(2)
Chapter 20 Product and process design: scalable and sustainable tissue-engineered product manufacturing
689(28)
Evan Claes
Tommy Heck
Maarten Sonnaert
Filip Donvil
Anais Schaschkow
Tim Desmet
Jan Schrooten
Abbreviations
689(1)
20.1 Learning objectives
689(1)
20.2 Introduction
690(3)
20.3 Regulatory aspects of TEP manufacturing
693(3)
20.4 The TEP manufacturing process
696(3)
20.5 Manufacturing process development: quality by design
699(4)
20.6 Smart manufacturing driven by digital twins
703(4)
20.7 Future perspective
707(4)
20.8 Recommended literature
711(1)
20.9 Assessment of your knowledge
712(2)
20.10 Glossary
714(1)
20.11 References
714(3)
Chapter 21 Clinical translation
717(30)
Johan Joly
Marina Marechal
Dieter Van Assche
Malcolm Moos Jr.
Frank P. Luyten
21.1 Learning objectives
717(1)
21.2 Introduction
717(6)
21.3 Clinical translation of tissue-engineered products
723(5)
21.4 Typical challenges for tissue engineering encountered in the clinical phase
728(4)
21.5 Implementation of a clinical trial
732(5)
21.6 Special points to consider
737(2)
21.7 Future perspective
739(2)
21.8 Recommended Literature
741(1)
21.9 Assessment of your knowledge
742(2)
21.10 Glossary
744(2)
21.11 References
746(1)
Index 747
Clemens van Blitterswijk graduated as cell biologist from Leiden University in 1982, defending his PhD thesis in 1985 at the same university. Today his research focuses on tissue engineering and regenerative medicine, forming a unique basis of multidisciplinary research between materials and life sciences. Van Blitterswijk has authored and co-authored more than 380 peer reviewed papers (H index 90, Scopus); is one of the most frequently cited Dutch scientists in TE; the applicant and co-applicant of over 100 patents; has guided 50 PhD candidates through their thesis as supervisor or co-supervisor and currently has 30 PhD candidates under his supervision. Dr. van Blitterswijk received a number of prestigious international awards including the George Winter award of the European society for Biomaterials, the Career Achievement Award of the Tissue Engineering and Regenerative Medicine International Society and is a member of the KNAW (The Royal Netherlands Academy of Arts and Sciences). Jan de Boer is an experienced University Professor and Chief Scientific Officer with a demonstrated history of working in academia and biotech. As a research professional he is skilled in Stem Cells, Biomaterial Engineering and Regenerative Medicine.  Jan is interested in the molecular complexity of cells and how molecular circuits are involved in cell and tissue function. With a background in mouse and Drosophila genetics, he entered the field of biomedical engineering in 2002 and has since focused on understanding and implementing molecular biology in the field of tissue engineering and regenerative medicine. His research is characterized by a holistic approach to both discovery and application, aiming at combining high throughput technologies, computational modeling and experimental cell biology, to streamline the wealth of biological knowledge to real clinical applications.