Atnaujinkite slapukų nuostatas

El. knyga: Topics in Graph Theory

, , (Rollins College, Winter Park, Florida, USA)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The interplay continues to grow between graph theory and a wide variety of models and applications in mathematics, computer science, operations research, and the natural and social sciences.

Topics in Graph Theory is geared toward the more mathematically mature student. The first three chapters provide the basic definitions and theorems of graph theory and the remaining chapters introduce a variety of topics and directions for research. These topics draw on numerous areas of theoretical and applied mathematics, including combinatorics, probability, linear algebra, group theory, topology, operations research, and computer science. This makes the book appropriate for a first course at the graduate level or as a second course at the undergraduate level.

The authors build upon material previously published in Graph Theory and Its Applications, Third Edition, by the same authors. That text covers material for both an undergraduate and graduate course, while this book builds on and expands the graduate-level material.

Features

  • Extensive exercises and applications.
  • Flexibility: appropriate for either a first course at the graduate level or an advanced course at the undergraduate level.
  • Opens avenues to a variety of research areas in graph theory.
    • Emphasis on topological and algebraic graph theory.


  • The interplay between graph theory and a wide variety of models and applications in mathematics, computer science, operations research, and the natural and social sciences continues to grow.

     

    1. Foundations.
    2. Isomorphisms and Symmetry.
    3. Trees and Connectivity.
    4. Planarity and Kuratowskis Theorem.
    5. Drawing Graphs and Maps.
    6. Graph
    Colorings.
    7. Measurement and Mappings.
    8. Analytic Graph Theory.
    9. Graph
    Colorings and Symmetry.
    10. Algebraic Specification of Graphs.
    11. Nonplanar
    Layouts.
    Mark Anderson is a professor of mathematics and computer science at Rollins College. His research interests in graph theory center on the topological or algebraic side.







    Jonathan L. Gross

    is a professor of computer science at Columbia University. His research interests include topology and graph theory.Jay Yellen is a professor of mathematics at Rollins College. His current areas of research include graph theory, combinatorics, and algorithms.