Atnaujinkite slapukų nuostatas

El. knyga: Topological Aperitif

, , Foreword by (Mathematical Institute, Oxford)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This is a book of elementary geometric topology, in which geometry, frequently illustrated, guides calculation. This book starts with a wealth of examples, often subtle, of how to be mathematically certain whether two objects are the same from the point of view of topology. After introducing surfaces, such as the Klein bottle, this book explores the properties of polyhedra drawn on these surfaces. More refined tools are developed in a chapter on winding number, and an appendix gives a glimpse of knot theory. Moreover, in this revised edition, a new section gives a geometrical description of part of the Classification Theorem for surfaces. Several striking new pictures show how given a sphere with any number of ordinary handles and at least one Klein handle, all the ordinary handles can be converted into Klein handles. Numerous examples and exercises make this a useful textbook for a first undergraduate course in topology, providing a firm geometrical foundation for further study.For much of the book the prerequisites are slight, though, so anyone with curiosity and tenacity will be able to enjoy the Aperitif. 'distinguished by clear and wonderful exposition and laden with informal motivation, visual aids, cool (and beautifully rendered) pictures! This is a terrific book and I recommend it very highly' - "MAA Online". 'Aperitif conjures up exactly the right impression of this book. The high ratio of illustrations to text makes it a quick read and its engaging style and subject matter whet the tastebuds for a range of possible main courses' - "Mathematical Gazette". '"A Topological Aperitif" provides a marvellous introduction to the subject, with many different tastes of ideas' - Professor Sir Roger Penrose OM FRS, Mathematical Institute, Oxford, UK.
Homeomorphic Sets
1(16)
Topological Properties
17(12)
Equivalent Subsets
29(32)
Surfaces and Spaces
61(16)
Polyhedra
77(26)
Winding Number
103(14)
A. Continuity 117(8)
B. Knots 125(8)
C. History 133(6)
D. Solutions 139(24)
Bibliography 163(2)
Index 165