Atnaujinkite slapukų nuostatas

El. knyga: Topological Quantum Computation

4.00/5 (10 ratings by Goodreads)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"Topological quantum computation is a computational paradigm based on topological phases of matter, which are governed by topological quantum field theories. In this approach, information is stored in the lowest energy states of many-anyon systems and processed by braiding non-abelian anyons. The computational answer is accessed by bringing anyons together and observing the result. Besides its theoretical esthetic appeal, the practical merit of the topological approach lies in its error-minimizing hypothetical hardware: topological phases of matter are fault-avoiding or deaf to most local noises, and unitary gates are implemented with exponential accuracy. Experimental realizations are pursued in systems such as fractional quantum Hall liquids and topological insulators. This book expands on the author's CBMS lectures on knots and topological quantum computing and is intended as a primer for mathematically inclined graduate students. With an emphasis on introducing basic notions and current research, this book gives the first coherent account of the field, covering a wide range of topics: Temperley-Lieb-Jones theory, the quantum circuit model, ribbon fusion category theory, topological quantum field theory, anyon theory, additive approximation of the Jones polynomial, anyonic quantum computing models, and mathematical models of topological phases of matter."--Publisher's description.

Preface ix
Acknowledgments xiii
Chapter 1 Temperley-Lieb-Jones Theories
1(24)
1.1 Generic Temperley-Lieb-Jones algebroids
1(12)
1.2 Jones algebroids
13(3)
1.3 Yang-Lee theory
16(1)
1.4 Unitarity
17(2)
1.5 Ising and Fibonacci theory
19(3)
1.6 Yamada and chromatic polynomials
22(1)
1.7 Yang-Baxter equation
22(3)
Chapter 2 Quantum Circuit Model
25(10)
2.1 Quantum framework
26(1)
2.2 Qubits
27(2)
2.3 n-qubits and computing problems
29(1)
2.4 Universal gate set
29(3)
2.5 Quantum circuit model
32(1)
2.6 Simulating quantum physics
32(3)
Chapter 3 Approximation of the Jones polynomial
35(6)
3.1 Jones evaluation as a computing problem
35(1)
3.2 FP#P -completeness of Jones evaluation
36(1)
3.3 Quantum approximation
37(2)
3.4 Distribution of Jones evaluations
39(2)
Chapter 4 Ribbon Fusion Categories
41(16)
4.1 Fusion rules and fusion categories
41(3)
4.2 Graphical calculus of RFCs
44(5)
4.3 Unitary fusion categories
49(1)
4.4 Link and 3-manifold invariants
49(2)
4.5 Frobenius-Schur indicators
51(2)
4.6 Modular tensor categories
53(2)
4.7 Classification of MTCs
55(2)
Chapter 5 (2+1)-TQFTs
57(16)
5.1 Quantum field theory
58(2)
5.2 Witten-Chern-Simons theories
60(1)
5.3 Framing anomaly
61(1)
5.4 Axioms for TQFTs
61(7)
5.5 Jones-Kauffman TQFTs
68(1)
5.6 Diagram TQFTs
69(2)
5.7 Reshetikhin-Turaev TQFTs
71(1)
5.8 Turaev-Viro TQFTs
71(1)
5.9 From MTCs to TQFTs
72(1)
Chapter 6 TQFTs in Nature
73(16)
6.1 Emergence and anyons
73(2)
6.2 FQHE and Chern-Simons theory
75(3)
6.3 Algebraic theory of anyons
78(8)
6.4 Intrinsic entanglement
86(3)
Chapter 7 Topological Quantum Computers
89(8)
7.1 Anyonic quantum computers
89(2)
7.2 Ising quantum computer
91(1)
7.3 Fibonacci quantum computer
92(1)
7.4 Universality of anyonic quantum computers
93(1)
7.5 Topological quantum compiling
94(1)
7.6 Approximation of quantum invariants
94(1)
7.7 Adaptive and measurement-only TQC
95(2)
Chapter 8 Topological phases of matter
97(12)
8.1 Doubled quantum liquids
97(5)
8.2 Chiral quantum liquids
102(2)
8.3 CFT and Holo=Mono
104(1)
8.4 Bulk-edge correspondence
104(1)
8.5 Interacting anyons and topological symmetry
105(1)
8.6 Topological phase transition
106(1)
8.7 Fault tolerance
106(3)
Chapter 9 Outlook and Open Problems
109(2)
9.1 Physics
109(1)
9.2 Computer science
110(1)
9.3 Mathematics
110(1)
Bibliography 111