Preface |
|
vii | |
|
|
|
|
3 | (38) |
|
|
3 | (6) |
|
|
3 | (3) |
|
|
6 | (1) |
|
|
7 | (2) |
|
|
9 | (17) |
|
|
9 | (3) |
|
|
12 | (4) |
|
1.2.3 The fundamental group |
|
|
16 | (6) |
|
|
22 | (4) |
|
|
26 | (15) |
|
|
26 | (5) |
|
|
31 | (5) |
|
1.3.3 The associated lattice |
|
|
36 | (5) |
|
|
41 | (22) |
|
2.1 The modular group Γ:=PSL(2,Z) |
|
|
41 | (9) |
|
2.1.1 The presentation of Γ |
|
|
41 | (6) |
|
|
47 | (3) |
|
|
50 | (13) |
|
2.2.1 Artin's braid groups Bn |
|
|
50 | (4) |
|
2.2.2 The Burau representation |
|
|
54 | (3) |
|
|
57 | (6) |
|
3 Trigonal curves and elliptic surfaces |
|
|
63 | (46) |
|
|
63 | (16) |
|
3.1.1 Basic definitions and properties |
|
|
63 | (8) |
|
|
71 | (5) |
|
3.1.3 Special geometric structures |
|
|
76 | (3) |
|
|
79 | (11) |
|
|
79 | (4) |
|
3.2.2 Compact elliptic surfaces |
|
|
83 | (7) |
|
|
90 | (19) |
|
|
91 | (5) |
|
3.3.2 Real trigonal curves and real elliptic surfaces |
|
|
96 | (5) |
|
3.3.3 Lefschetz fibrations |
|
|
101 | (8) |
|
|
109 | (37) |
|
|
109 | (9) |
|
|
109 | (6) |
|
|
115 | (3) |
|
4.2 Trigonal curves via dessins |
|
|
118 | (19) |
|
4.2.1 The correspondence theorems |
|
|
118 | (2) |
|
|
120 | (11) |
|
4.2.3 Generic real curves |
|
|
131 | (6) |
|
|
137 | (9) |
|
|
137 | (5) |
|
4.3.2 Elliptic Lefschetz fibrations revisited |
|
|
142 | (4) |
|
|
146 | (37) |
|
5.1 The Zariski-van Kampen theorem |
|
|
146 | (18) |
|
5.1.1 The monodromy of a proper n-gonal curve |
|
|
146 | (6) |
|
5.1.2 The fundamental groups |
|
|
152 | (6) |
|
5.1.3 Improper curves: slopes |
|
|
158 | (6) |
|
5.2 The case of trigonal curves |
|
|
164 | (13) |
|
5.2.1 Monodromy via skeletons |
|
|
164 | (6) |
|
|
170 | (3) |
|
|
173 | (4) |
|
|
177 | (6) |
|
|
177 | (2) |
|
5.3.2 The irreducibility criteria |
|
|
179 | (4) |
|
|
|
6 The metabelian invariants |
|
|
183 | (20) |
|
|
183 | (7) |
|
6.1.1 Uniform dihedral quotients |
|
|
183 | (4) |
|
6.1.2 Geometric implications |
|
|
187 | (3) |
|
|
190 | (13) |
|
|
190 | (3) |
|
6.2.2 Proof of Theorem 6.16: the case N ≥ 7 |
|
|
193 | (3) |
|
6.2.3 Congruence subgroups (the case N ≤ 5) |
|
|
196 | (3) |
|
6.2.4 The parabolic case N = 6 |
|
|
199 | (4) |
|
7 A few simple computations |
|
|
203 | (24) |
|
7.1 Trigonal curves in Σ2 |
|
|
203 | (10) |
|
7.1.1 Proper curves in Σ2 |
|
|
203 | (4) |
|
7.1.2 Perturbations of simple singularities |
|
|
207 | (6) |
|
7.2 Sextics with a non-simple triple point |
|
|
213 | (11) |
|
7.2.1 A gentle introduction to plane sextics |
|
|
213 | (7) |
|
7.2.2 Classification and fundamental groups |
|
|
220 | (1) |
|
7.2.3 A summary of further results |
|
|
221 | (3) |
|
|
224 | (3) |
|
8 Fundamental groups of plane sextics |
|
|
227 | (48) |
|
|
227 | (4) |
|
|
227 | (1) |
|
8.1.2 Beginning of the proof |
|
|
228 | (3) |
|
8.2 A distinguished point of type E |
|
|
231 | (28) |
|
|
232 | (6) |
|
|
238 | (6) |
|
|
244 | (15) |
|
8.3 A distinguished point of type D |
|
|
259 | (16) |
|
8.3.1 A point of type Dp, p ≥ 6 |
|
|
259 | (4) |
|
|
263 | (6) |
|
|
269 | (6) |
|
9 The transcendental lattice |
|
|
275 | (13) |
|
9.1 Extremal elliptic surfaces without exceptional fibers |
|
|
275 | (6) |
|
9.1.1 The tripod calculus |
|
|
275 | (2) |
|
9.1.2 Proofs and further observations |
|
|
277 | (4) |
|
9.2 Generalizations and examples |
|
|
281 | (7) |
|
9.2.1 A computation via the homological invariant |
|
|
281 | (3) |
|
|
284 | (4) |
|
10 Monodromy factorizations |
|
|
288 | (41) |
|
|
288 | (9) |
|
10.1.1 Statement of the problem |
|
|
288 | (3) |
|
10.1.2 Fn-valued factorizations |
|
|
291 | (1) |
|
10.1.3 Sn-valued factorizations |
|
|
292 | (5) |
|
|
297 | (19) |
|
10.2.1 Exponential examples |
|
|
297 | (4) |
|
|
301 | (6) |
|
10.2.3 The transcendental lattice |
|
|
307 | (6) |
|
10.2.4 2-factorizations via matrices |
|
|
313 | (3) |
|
10.3 Geometric applications |
|
|
316 | (13) |
|
10.3.1 Extremal elliptic surfaces |
|
|
316 | (2) |
|
10.3.2 Ribbon curves via skeletons |
|
|
318 | (5) |
|
10.3.3 Maximal Lefschetz fibrations are algebraic |
|
|
323 | (6) |
|
|
|
A An algebraic complement |
|
|
329 | (11) |
|
|
329 | (1) |
|
A.1.1 Nikulin's theory of discriminant forms |
|
|
329 | (2) |
|
|
331 | (4) |
|
|
335 | (1) |
|
|
335 | (1) |
|
|
336 | (1) |
|
A.2.3 Alexander module and dihedral quotients |
|
|
337 | (3) |
|
|
340 | (6) |
|
|
340 | (4) |
|
B.2 Plane quartics, quintics, and sextics |
|
|
344 | (2) |
|
C Computer implementations |
|
|
346 | (13) |
|
|
346 | (1) |
|
C.1.1 Manipulating skeletons in GAP |
|
|
346 | (6) |
|
C.1.2 Proof of Theorem 6.16 |
|
|
352 | (7) |
|
D Definitions and notation |
|
|
359 | (10) |
|
|
359 | (1) |
|
D.1.1 Groups and group actions |
|
|
359 | (1) |
|
D.1.2 Topology and homotopy theory |
|
|
360 | (2) |
|
|
362 | (2) |
|
D.1.4 Miscellaneous notation |
|
|
364 | (1) |
|
|
365 | (4) |
Bibliography |
|
369 | (10) |
Index of figures |
|
379 | (3) |
Index of tables |
|
382 | (1) |
Index |
|
383 | |