Atnaujinkite slapukų nuostatas

El. knyga: Towards the Optical Control of Resonantly Bonded Materials: An Ultrafast X-Ray Study

  • Formatas: PDF+DRM
  • Serija: Springer Theses
  • Išleidimo metai: 22-Jan-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031428265
  • Formatas: PDF+DRM
  • Serija: Springer Theses
  • Išleidimo metai: 22-Jan-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031428265

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This thesis describes key contributions to the fundamental understanding of materials structure and dynamics from a microscopic perspective. In particular, the thesis reports several advancements in time-domain methodologies using ultrafast pulses from X-ray free-electron lasers (FEL) to probe the interactions between electrons and phonons in photoexcited materials. Using femtosecond time-resolved X-ray diffraction, the author quantifies the coherent atomic motion trajectory upon sudden excitation of carriers in SnSe. This allows the reconstruction of the nonequilibrium lattice structure and identification of a novel lattice instability towards a higher-symmetry structure not found in equilibrium. This is followed by an investigation of the excited-state phonon dispersion in SnSe using time-resolved X-ray diffuse scattering which enables important insight into how photoexcitation alters the strength of specific bonds leading to the novel lattice instability observed in X-ray diffraction. Finally, by combining ultrafast X-ray diffraction and ARPES, the author performs quantitative measurements of electron-phonon coupling in Bi2Te3 and Bi2Se3. The findings highlight the importance of time-resolved X-ray scattering techniques based on FELs, which reveals the details of interplay between electron orbitals, atomic bonds, and structural instabilities. The microscopic information of electron phonon interaction obtained from these methods can rationalize ways to control materials and to design their functional properties.

Chapter 1: Ultrafast X-ray Scattering and Nonequilibrium States of Matter.
Chapter 2: Lattice Dynamics: Excitation and Probe.
Chapter 3: Resonantly Bonded Semiconductors.
Chapter 4: Ultrafast Lasers and X-ray Pump Probe Experiment.
Chapter 5: Photoinduced Novel Lattice Instability in SnSe.

Yijing Huang earned her Bachelor's degree in Physics from Tsinghua University in 2016. She completed her PhD in the year 2022 in the Applied Physics program at Stanford University. Her primary research interests revolve around the field of light-matter interaction, with a specific focus on ultrafast X-ray scattering and the study of nonequilibrium states of matter for her thesis.

Currently, she is an IQUIST (Illinois Quantum Information Science and Technology) fellow at the University of Illinois, within the Department of Physics. Dr. Huang's thesis work was recognized when she was awarded the 2022 LCLS (Linac Coherent Light Source) Young Investigator Award. She was also selected as one of the finalists for the Carl E. Anderson Division of Laser Science Dissertation Award.

As of the time of this publication, Yijing Huang remains actively involved in research in the field of light-matter interaction and its applications.