Atnaujinkite slapukų nuostatas

El. knyga: Toxicology and Biochemistry of Insecticides 2nd edition [Taylor & Francis e-book]

(University of Florida, Gainesville, USA)
  • Formatas: 380 pages, 64 Tables, black and white; 3 Illustrations, color; 387 Illustrations, black and white
  • Išleidimo metai: 24-Nov-2014
  • Leidėjas: CRC Press Inc
  • ISBN-13: 9780429173288
  • Taylor & Francis e-book
  • Kaina: 170,80 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Standartinė kaina: 244,00 €
  • Sutaupote 30%
  • Formatas: 380 pages, 64 Tables, black and white; 3 Illustrations, color; 387 Illustrations, black and white
  • Išleidimo metai: 24-Nov-2014
  • Leidėjas: CRC Press Inc
  • ISBN-13: 9780429173288
Yu’s second edition of this insecticide handbook has been expanded and updated, adding information on recently discovered molecular mechanisms, environmental impacts, and newly developed agents. The first several chapters cover pesticide use patterns, physical formulations, and regulatory law, followed by a comprehensive listing of insecticides by structural class. This listing is followed by coverage of toxicity determination methods, uptake of the chemicals into insect bodies, and the pharmacological and physico-chemical mechanisms of toxicity. Insecticide metabolism is discussed, moving from metabolic biochemistry to species selectivity in toxicity and then broadening focus to insecticide resistance, which may be mediated depending on the case by metabolic changes or by a variety of other mechanisms.The final chapter discusses environmental distribution of insecticides and their effects on other organisms. Annotation ©2015 Ringgold, Inc., Portland, OR (protoview.com)

Despite their potentially adverse effects on nontarget species and the environment, insecticides remain a necessity in crop protection as well as in the reduction of insect-borne diseases. The Toxicology and Biochemistry of Insecticides provides essential insecticide knowledge required for the effective management of insect pests.

Continuing as the sole book in more than two decades to address this multifaceted field, the Second Edition of this highly praised review on insecticide toxicology has been greatly expanded and updated to present the most current information on:

  • Systemic classification of insecticides (Chapter 4)
  • How insecticides function at the molecular level and newly discovered modes of action (Chapter 7)
  • Insecticide resistance, molecular mechanisms, fitness costs, reversion, and management of resistance (Chapter 10)
  • Various bioassay methods including the interpretation of probit analysis (Chapter 5)
  • Molecular mechanisms of insecticide selectivity (Chapter 9)
  • Major biochemical mechanisms involved in the transformation of insecticides (Chapter 8)
  • Fate of insecticides in the environment and the sublethal effects of insecticides on wildlife (Chapter 11)
  • Newly developed insecticides, including the addition of more microbial insecticides in keeping with current integrated pest management (IPM) approaches (Chapter 4)

Incorporating extensive reference lists for further reading, The Toxicology and Biochemistry of Insecticides, Second Edition is an ideal textbook for students of entomology, plant medicine, insecticide toxicology, and related agricultural disciplines. It is also a valuable resource for those involved in insecticide research, environmental toxicology, and crop protection.

Preface to the Second Edition xiii
Preface to the First Edition xv
Author xvii
Chapter 1 Need for Pesticides and Their Pattern of Use 1(8)
1.1 Introduction
1(1)
1.2 Need for Pesticides
1(3)
1.2.1 Food Production
1(2)
1.2.2 World Health Status
3(1)
1.3 Pattern of Use
4(3)
1.4 Pesticide Economics
7(1)
References
8(1)
Chapter 2 Formulation of Pesticides 9(12)
2.1 Introduction
9(1)
2.2 Types of Formulation
9(5)
2.2.1 Dusts
9(1)
2.2.2 Wettable Powders
10(1)
2.2.3 Emulsifiable Concentrates
10(1)
2.2.4 Suspendable Concentrates or Flowables
10(1)
2.2.5 Water-Soluble Powders
10(1)
2.2.6 Solutions
11(1)
2.2.7 Granules
11(1)
2.2.8 Water-Dispersible Granules
11(1)
2.2.9 Ultralow-Volume Formulations
11(1)
2.2.10 Aerosols
12(1)
2.2.11 Controlled-Release Formulations
12(1)
2.2.12 Baits
13(1)
2.3 Nonpesticidal Ingredients of Formulations
14(3)
2.3.1 Solvents
14(1)
2.3.2 Diluents
15(1)
2.3.3 Surfactants
15(2)
2.4 Disposal of Pesticide Containers
17(1)
2.5 Pesticide Application Equipment
18(1)
References
18(3)
Chapter 3 Pesticide Laws and Regulations 21(10)
3.1 Introduction
21(1)
3.2 Federal Insecticide, Fungicide, and Rodenticide Act
21(6)
3.2.1 Registration of Pesticides
21(4)
3.2.2 Classification of Pesticides and Certification of Applicators
25(1)
3.2.3 Other Provisions of FIFRA
25(1)
3.2.3.1 Experimental Use Permits
25(1)
3.2.3.2 Review and Suspension
25(1)
3.2.3.3 Registration of Establishments
26(1)
3.2.3.4 Unlawful Acts
26(1)
3.2.3.5 Penalties
26(1)
3.2.3.6 Rights to Data
26(1)
3.2.3.7 Special Review
26(1)
3.2.4 Pesticide Categories
26(1)
3.3 Federal Food, Drug, and Cosmetic Act
27(1)
3.3.1 Tolerance
27(1)
3.3.2 Basis for Tolerance
27(1)
3.4 Food Quality Protection Act
27(1)
3.5 State Laws
28(1)
3.6 Enforcement
29(1)
References
29(2)
Chapter 4 Classification of Insecticides 31(72)
4.1 Introduction
31(1)
4.2 Classification of Insecticides
31(69)
4.2.1 Chlorinated Hydrocarbon Insecticides
31(4)
4.2.1.1 DDT Group
31(2)
4.2.1.2 Chlorinated Cyclic Compounds
33(2)
4.2.2 Organophosphates
35(9)
4.2.2.1 Phosphates
35(2)
4.2.2.2 Phosphorothioates
37(2)
4.2.2.3 Phosphorodithioates
39(3)
4.2.2.4 Phosphorothiolates
42(1)
4.2.2.5 Phosphonates
42(1)
4.2.2.6 Phosphoramidates
43(1)
4.2.3 Carbamates
44(6)
4.2.4 Pyrethroids
50(8)
4.2.5 Botanical Insecticides
58(2)
4.2.5.1 Nicotine
58(1)
4.2.5.2 Rotenone
59(1)
4.2.5.3 Azadirachtin
59(1)
4.2.5.4 Sabadilla
59(1)
4.2.5.5 Ryania
60(1)
4.2.6 Insect Growth Regulators
60(7)
4.2.6.1 Juvenoids (Juvenile Hormone Mimics)
60(2)
4.2.6.2 Benzoylphenylureas (Acylureas)
62(4)
4.2.6.3 Diacylhydrazines
66(1)
4.2.6.4 Triazines
66(1)
4.2.6.5 Thiadiazines
67(1)
4.2.7 Neon icoti noids
67(2)
4.2.8 Formamidines
69(1)
4.2.9 Microbial Insecticides
70(8)
4.2.9.1 Bacteria
70(7)
4.2.9.2 Fungi
77(1)
4.2.9.3 Baculoviruses
77(1)
4.2.9.4 Protozoa
78(1)
4.2.10 Fumigants
78(2)
4.2.11 Inorganic Insecticides
80(1)
4.2.12 Miscellaneous Insecticide Classes
80(10)
4.2.12.1 Amidinohydrazones
80(1)
4.2.12.2 Phenylpyrazoles (Fiproles)
80(1)
4.2.12.3 Pyrazoles
81(1)
4.2.12.4 Pyrroles
82(1)
4.2.12.5 Oxadiazines
82(1)
4.2.12.6 Sulfonamides
83(1)
4.2.12.7 Pyridazinones
83(1)
4.2.12.8 Nereistoxin Analogs
84(1)
4.2.12.9 Pyridine Azomethines
85(1)
4.2.12.10 Pyrimidinamines
85(1)
4.2.12.11 Trifluoromethylnicotinamides
86(1)
4.2.12.12 Diamides
86(1)
4.2.12.13 Dichloropropenyl Ethers
87(1)
4.2.12.14 Tetronic Acids
88(1)
4.2.12.15 Tetramic Acids
88(1)
4.2.12.16 Semicarbazones
89(1)
4.2.12.17 Quinazolinones
89(1)
4.2.12.18 Sulfoximines
90(1)
4.2.12.19 Pesticidal Oils and Soaps
90(1)
4.2.13 Acaricides
90(8)
4.2.13.1 Organosulfurs
90(1)
4.2.13.2 Inorganics
91(1)
4.2.13.3 Organotins
91(1)
4.2.13.4 Pyrazoles
92(1)
4.2.13.5 Quinazolines
92(1)
4.2.13.6 Methoxyacrylates
93(1)
4.2.13.7 Naphthoqu inones
93(1)
4.2.13.8 Tetronic Acids
94(1)
4.2.13.9 Tetrazines
94(1)
4.2.13.10 Oxazoles
95(1)
4.2.13.11 Carbazates
95(1)
4.2.13.12 Benzoylacetonitriles (Acylacetonitriles)
95(1)
4.2.13.13 Trifluoromethanesulfonanilides
96(1)
4.2.13.14 Bridged Diphenyls
96(1)
4.2.13.15 Thiazolidines
96(1)
4.2.13.16 Quinoxalines
97(1)
4.2.13.17 Pyrethroid Ethers
97(1)
4.2.13.18 Thiocarbamates
97(1)
4.2.13.19 Monoterpenoids
98(1)
4.2.14 Insect Repellents
98(6)
4.2.14.1 Synthetic Insect Repellents
98(1)
4.2.14.2 Botanical Insect Repellents
99(1)
References
100(3)
Chapter 5 Evaluation of Toxicity 103(20)
5.1 Introduction
103(1)
5.2 Testing Procedures
103(1)
5.3 Tests with Insects
104(3)
5.3.1 Topical Application
104(1)
5.3.2 Injection Method
104(1)
5.3.3 Dipping Method
105(1)
5.3.4 Contact Method (Residual Exposure Method)
105(1)
5.3.5 Fumigation Method
106(1)
5.3.6 Feeding Method
106(1)
5.4 Tests with Higher Animals
107(1)
5.4.1 Acute Toxicity Tests
107(1)
5.4.2 Subacute Toxicity and Chronic Toxicity Tests
107(1)
5.5 Probit Analysis
107(4)
5.6 Source of Variability in Dose—Response Tests
111(2)
5.6.1 Age
111(1)
5.6.2 Sex
112(1)
5.6.3 Rearing Temperature
112(1)
5.6.4 Food Supply
112(1)
5.6.5 Population Density
113(1)
5.6.6 Illumination
113(1)
5.7 Use of LDP Lines
113(3)
Appendix 5.A
116(4)
References
120(3)
Chapter 6 Uptake of Insecticides 123(10)
6.1 Introduction
123(1)
6.2 Penetration of Insecticides through the Insect Cuticle
123(5)
6.2.1 Structure of Insect Cuticle
123(1)
6.2.2 Movement of Insecticides through the Cuticle
123(1)
6.2.3 Site of Entry
124(2)
6.2.4 Factors Affecting Cuticular Penetration Rates
126(2)
6.2.4.1 Effect of Solvent
126(1)
6.2.4.2 Polarity of Insecticides
127(1)
6.2.4.3 Cuticular Composition
128(1)
6.2.5 Metabolism of Insecticides in the Cuticle
128(1)
6.3 Entry via the Mouth
128(1)
6.4 Uptake via the Spiracles
129(1)
References
130(3)
Chapter 7 Mode of Action of Insecticides 133(42)
7.1 Introduction
133(1)
7.2 Insecticides Affecting Voltage-Gated Sodium Channels
133(6)
7.2.1 Background
133(4)
7.2.2 Mode of Action of the DDT Group, Pyrethroids, Indoxacarb, Sabadilla, and Metaflumizone
137(2)
7.3 Insecticides Affecting Ryanodine Receptors
139(2)
7.4 Insecticides Inhibiting Acetylcholinesterase
141(6)
7.4.1 Background
141(2)
7.4.2 Mode of Action of Organophosphorus and Carbamate Insecticides
143(4)
7.5 Insecticides Interfering with Chloride Channels
147(3)
7.5.1 GABA-Gated Chloride Channels
147(2)
7.5.2 Glutamate-Gated Chloride Channels
149(1)
7.6 Insecticides That Bind to Nicotinic Acetylcholine Receptors
150(3)
7.7 Insecticides Affecting Octopamine Receptors
153(1)
7.8 Insecticides Interfering with Respiration
154(1)
7.8.1 Inhibitors of the Mitochondrial Electron Transport System
154(1)
7.8.2 Inhibitors of Oxidative Phosphorylation
155(1)
7.9 Insecticides Disrupting Insect Midgut Membranes
155(2)
7.9.1 Bacillus thuringiensis
155(2)
7.9.2 Bacillus sphaericus
157(1)
7.10 Mode of Action of Baculovirus Insecticides
157(1)
7.11 Insecticides Affecting Chitin Biosynthesis or Cuticle Sclerotization
157(3)
7.12 Insecticides Acting as Juvenile Hormone Mimics
160(2)
7.13 Insecticides Acting as Ecdysone Agonists or Blocking Molting Hormone Activity
162(1)
7.14 Insecticides Causing Protein Degradation and Necrotic Cell Death
163(1)
7.15 Insecticides Abrading or Disrupting Insect Cuticle
163(1)
7.16 Insecticides Acting as Selective Feeding Blockers
163(1)
7.17 Insecticides Causing Suffocation
164(1)
7.18 Mode of Action of Acaricides
164(2)
7.18.1 Acaricides Interfering with Respiration
164(1)
7.18.2 Acaricides Interfering with Growth and Development
165(1)
7.18.3 Acaricides Acting as Neurotoxins
166(1)
7.19 Mode of Action of Insect Repellents
166(1)
References
167(8)
Chapter 8 Principles of Pesticide Metabolism 175(46)
8.1 Introduction
175(1)
8.2 Phase I Reactions
176(9)
8.2.1 Oxidation
176(6)
8.2.2 Hydrolysis
182(2)
8.2.3 Reduction
184(1)
8.3 Phase II Reactions
185(7)
8.3.1 Glucose Conjugation
186(1)
8.3.2 Glucuronic Acid Conjugation
186(1)
8.3.3 Sulfate Conjugation
187(1)
8.3.4 Phosphate Conjugation
187(1)
8.3.5 Amino Acid Conjugation
187(1)
8.3.6 Glutathione Conjugation
188(4)
8.4 Metabolic Systems in Plants
192(1)
8.5 Metabolic Pathways of Selected Insecticides
192(24)
8.5.1 Carbamates
193(2)
8.5.2 Organophosphates
195(2)
8.5.3 Pyrethroids
197(2)
8.5.4 Chlorinated Hydrocarbons
199(1)
8.5.5 Benzoylphenylureas
199(1)
8.5.6 Juvenoids
200(1)
8.5.7 Neon icotinoids
200(3)
8.5.8 Formamidines
203(2)
8.5.9 Amidinohydrazones
205(1)
8.5.10 Phenylpyrazoles
205(1)
8.5.11 Thiadiazines
205(1)
8.5.12 Triazines
205(2)
8.5.13 Quinazolines
207(1)
8.5.14 Organotins
207(1)
8.5.15 Microbial Insecticides
208(1)
8.5.16 Diacylhydrazines
209(1)
8.5.17 Nereistoxin Analogs
209(1)
8.5.18 Thiocarbamates
209(2)
8.5.19 Organosulfurs
211(1)
8.5.20 Pyrazoles
211(1)
8.5.21 Phthalic Acid Diamides
211(1)
8.5.22 Anthranilic Diamides
212(1)
8.5.23 Tetronic Acids
212(3)
8.5.24 Dichloropropenyl Ethers
215(1)
References
216(5)
Chapter 9 Species Differences and Other Phenomena Associated with the Metabolism of Xenobiotics 221(36)
9.1 Introduction
221(1)
9.2 Species Differences in Detoxification Enzyme Activity
221(7)
9.2.1 Examples of Differences
221(6)
9.2.2 Evolution of Species Differences in Detoxification
227(1)
9.3 Effect of Age and Sex on Enzyme Activity
228(3)
9.4 Specificity of Detoxification Enzymes
231(2)
9.5 Selective Toxicity
233(8)
9.6 Synergism and Antagonism
241(4)
9.7 Enzyme Induction
245(6)
9.7.1 Induction of Detoxification Enzymes
245(4)
9.7.1.1 Cytochrome P450 Monooxygenases
245(2)
9.7.1.2 Glutathione S-Transferases
247(2)
9.7.1.3 Esterases and Reductases
249(1)
9.7.2 Enzyme Induction as Detoxification Mechanism
249(2)
9.8 Insecticide Resistance
251(1)
References
251(6)
Chapter 10 Insecticide Resistance 257(66)
10.1 Introduction
257(1)
10.2 Genetics of Resistance
258(10)
10.2.1 Preadaptation
258(2)
10.2.2 Gene Frequency
260(1)
10.2.3 Dominance and Number of Genes
261(5)
10.2.3.1 Monogenic Inheritance
264(1)
10.2.3.2 Polygenic Inheritance
264(2)
10.2.4 Reversion of Resistance
266(2)
10.3 Mechanisms of Resistance
268(14)
10.3.1 Behavioral Resistance
268(1)
10.3.2 Physiological Resistance
268(14)
10.3.2.1 Reduced Penetration
269(1)
10.3.2.2 Target Site Insensitivity
269(7)
10.3.2.3 Increased Detoxification
276(6)
10.4 Interaction Phenomena
282(9)
10.4.1 Cross-Resistance and Multiple Resistance
282(2)
10.4.2 Interaction of Resistance Factors
284(1)
10.4.3 Fitness Costs of Insecticide Resistance
285(6)
10.4.3.1 Resistance to Organophosphorus and Carbamate Insecticides
286(1)
10.4.3.2 Resistance to Pyrethroid Insecticides
286(1)
10.4.3.3 Resistance to Microbial Insecticides
286(1)
10.4.3.4 Resistance to Chlorinated Hydrocarbon Insecticides
287(1)
10.4.3.5 Resistance to Insect Growth Regulators
288(1)
10.4.3.6 Resistance to Neonicotinoid Insecticides
288(1)
10.4.3.7 Resistance to Miscellaneous Insecticides and Multiple Resistance
288(1)
10.4.3.8 Association between Fitness Disadvantage and Resistance Mechanism
289(2)
10.5 Rate of Development of Resistance
291(4)
10.5.1 Frequency of R Alleles
292(1)
10.5.2 Dominance of R Alleles
292(1)
10.5.3 Generation Turnover
292(1)
10.5.4 Population Mobility
293(1)
10.5.5 Persistence of Pesticide Residues
294(1)
10.5.6 Selection Pressure
294(1)
10.6 Pattern of Resistance Development
295(1)
10.7 Management of Resistance
295(9)
10.7.1 Reducing Resistance Gene Frequency
296(1)
10.7.2 Use of Insecticide Mixtures and Rotations
296(2)
10.7.3 Use of Insecticide Synergists
298(2)
10.7.4 Use of New Pesticides
300(1)
10.7.5 Use of Resistant Predators and Parasites
301(1)
10.7.6 Field Monitoring
302(1)
10.7.7 Use of Transgenic Crops
303(1)
References
304(19)
Chapter 11 Pesticides in the Environment 323(26)
11.1 Introduction
323(1)
11.2 Persistence of Pesticides in Soil
323(8)
11.2.1 Adsorptive Forces
323(1)
11.2.1.1 Chemical Bonding
323(1)
11.2.1.2 Physical Binding
324(1)
11.2.1.3 Hydrogen Bonding
324(1)
11.2.2 Factors Influencing Persistence of Pesticides in Soil
324(7)
11.2.2.1 Soil Type
325(1)
11.2.2.2 Nature of the Pesticide
326(1)
11.2.2.3 Soil Moisture
326(1)
11.2.2.4 Soil pH
326(1)
11.2.2.5 Soil Temperature
327(1)
11.2.2.6 Microbial Degradation
327(4)
11.3 Photodegradation of Pesticides
331(5)
11.3.1 Hydrolysis
335(1)
11.3.2 Dechlorination
335(1)
11.3.3 Oxidation
335(1)
11.3.4 Isomerization (Intramolecular Rearrangement Process)
335(1)
11.4 Pesticides and the Food Chain
336(4)
11.4.1 Lipid Solubility of Pesticides
338(1)
11.4.2 Metabolic Activity
339(1)
11.4.3 Feeding Habits
339(1)
11.4.4 Behavior and Ecological Niche
339(1)
11.5 Sublethal Effects of Pesticides on Wildlife
340(4)
11.5.1 Eggshell Thinning in Birds
340(1)
11.5.2 Endocrine Disruption in Wildlife
341(1)
11.5.3 Biomarkers as Indicators of Pesticide Pollution
342(2)
References
344(5)
Index 349
Simon J. Yu is professor emeritus at the University of Florida, Gainesville, USA. He holds a BS from National Taiwan University, Taipei, and an MS and Ph.D from McGill University, Montreal, Quebec, Canada. After completing postdoctoral studies at Cornell University, Ithaca, New York, USA, and Oregon State University, Corvallis, USA, he served as assistant professor at Oregon State from 1974 to 1979. He moved to the University of Florida in 1980, and was promoted to associate professor in 1982 and professor in 1986. He retired from the university in 2006, but remains an emeritus faculty. His research has been supported by USDA, NSF, NIH, EPA, and various pesticide companies.