Atnaujinkite slapukų nuostatas

El. knyga: Transformation Groups in Differential Geometry

  • Formatas: PDF+DRM
  • Serija: Classics in Mathematics
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642619816
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Classics in Mathematics
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642619816
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc­ tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo­ metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec­ tures I gave in Tokyo and Berkeley in 1965.

Daugiau informacijos

Springer Book Archives
I. Automorphisms of G-Structures.-
1. G -Structures.-
2. Examples of
G-Structures.-
3. Two Theorems on Differentiable Transformation Groups.-
4.
Automorphisms of Compact Elliptic Structures.-
5. Prolongations of
G-Structures.-
6. Volume Elements and Symplectic Structures.-
7. Contact
Structures.-
8. Pseudogroup Structures, G-Structures and Filtered Lie
Algebras.- II. Isometries of Riemannian Manifolds.-
1. The Group of
Isometries of a Riemannian Manifold.-
2. Infinitesimal Isometries and
Infinitesimal Affine Transformations.-
3. Riemannian Manifolds with Large
Group of Isometries.-
4. Riemannian Manifolds with Little Isometries.-
5.
Fixed Points of Isometries.-
6. Infinitesimal Isometries and Characteristic
Numbers.- III. Automorphisms of Complex Manifolds.-
1. The Group of
Automorphisms of a Complex Manifold.-
2. Compact Complex Manifolds with
Finite Automorphism Groups.-
3. Holomorphic Vector Fields and Holomorphic
1-Forms.-
4. Holomorphic Vector Fields on Kahler Manifolds.-
5. Compact
Einstein-Kähler Manifolds.-
6. Compact Kähler Manifolds with Constant Scalar
Curvature.-
7. Conformal Changes of the Laplacian.-
8. Compact Kähler
Manifolds with Nonpositive First Chern Class.-
9. Projectively Induced
Holomorphic Transformations.-
10. Zeros of Infinitesimal Isometries.-
11.
Zeros of Holomorphic Vector Fields.-
12. Holomorphic Vector Fields and
Characteristic Numbers.- IV. Affine, Conformal and Projective
Transformations.-
1. The Group of Affine Transformations of an Affinely
Connected Manifold.-
2. Affine Transformations of Riemannian Manifolds.-
3.
Cartan Connections.-
4. Projective and Conformal Connections.-
5. Frames of
Second Order.-
6. Projective and Conformal Structures.-
7. Projective and
Conformal Equivalences.- Appendices.-
1. Reductions of 1-Forms andClosed
2-Forms.-
2. Some Integral Formulas.-
3. Laplacians in Local Coordinates.
Biography of Shoshichi Kobayashi



Shoshichi Kobayashi was born January 4, 1932 in Kofu, Japan. After obtaining his mathematics degree from the University of Tokyo and his Ph.D. from the University of Washington, Seattle, he held positions at the Institute for Advanced Study, Princeton, at MIT and at the University of British Columbia between 1956 and 1962, and then moved to the University of California, Berkeley, where he is now Professor in the Graduate School.



Kobayashi's research spans the areas of differential geometry of real and complex variables, and his numerous resulting publications include several book: Foundations of Differential Geometry with N. Nomizu, Hyperbolic Complex Manifolds and Holomorphic mappings and Differential Geometry of Complex Vector Bundles.