Atnaujinkite slapukų nuostatas

El. knyga: Transgenesis and the Management of Vector-Borne Disease

Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Parasitic, bacterial and viral agents continue to challenge the welfare of humans, livestock, wild life and plants worldwide. The public health impact and financial consequences of these diseases are particularly hard on the already overburdened economies of developing countries especially in the tropics. Many of these disease agents utilize insect hosts (vectors) to achieve their transmission to mammals. In the past, these diseases were largely controlled by insecticide-based vector reduction strategies. Now, many of these diseases have reemerged in the tropics, recolonizing their previous range, and expanding into new territories previously not considered to be endemic. Habitat change, irrigation practices, atmospheric and climate change, insecticide and drug resistance as well as increases in global tourism, human traffic and commercial activities, have driven the reemergence and spread of vector borne diseases. While these diseases can be controlled through interventions aimed at both their vertebrate and invertebrate hosts, no effective vaccines exist, and only limited therapeutic prospects are available for their control in mammalian hosts. Molecular technologies such as transgenesis, which is the subject of this book, stand to increase the toolbox and benefit disease management strategies.
Perspectives ON The State Of Insect Transgenics
1(18)
David A. O'Brochta
Alfred M. Handler
Introduction
1(1)
Transposon Vectors and Insect Transformation
2(2)
Transformation Markers
4(1)
Targeting and Stabilization
5(1)
Random Transgene Insertion
5(3)
Transgenic Strains for Biocontrol
8(1)
Fluorescent Protein Genetic Markers
8(1)
Conditional Regulation for Sterility and Lethality
9(1)
Paratransgenesis
10(1)
Viruses
10(1)
Perspectives on TE Spread and Genetic Manipulation for Disease Vector Control
11(1)
Broadening Our Perspective
12(7)
Alphavirus Transducing Systems
19(1)
Brian D. Foy
Ken E. Olson
Introduction
19(1)
Alphaviruses
20(2)
ATS Construction
22(1)
Currently Used ATSs
22(2)
Alphavirus/Mosquito Interactions
24(3)
Gene Expression with ATSs
27(1)
ATS's for Induction of RNA Interference
27(3)
Biosafety Considerations for Using ATSs
30(1)
Conclusion
30(5)
Paratransgenesis Applied For Control Of Tsetse Transmitted Sleeping Sickness
35(1)
Serap Aksoy
Brian Weiss
Geoffrey Attardo
Introduction
35(1)
Symbiosis in Tsetse
36(1)
Symbiont-Host Interactions During Development
37(1)
Tsetse's Reproductive Biology and Symbiont Transmission
38(11)
Biology of African Trypanosome Transmission in Tsetse
38(1)
Paratransgenic Gene Expression in Tsetse
39(2)
Reconstitution of Tsetse with Modified Symbiont Flora
41(1)
Effector Genes with Trypanocidal Activity
42(1)
Gene Driver System
43(1)
Applications with Parasite Resistant Tsetse
43(1)
Application of Paratransgenesis for Control of Other Insect Transmitted Diseases
44(1)
Future Directions
45(4)
Bacteria Of The Genus Asaia: A Potential Paratransgenic Weapon Against Malaria
49(11)
Guido Favia
Irene Ricci
Massimo Marzorati
Ilaria Negri
Alberto Alma
Luciano Sacchi
Claudio Bandi
Daniele Daffonchio
Introduction
49(1)
Malaria and Symbiotic Control Strategies
50(1)
a-Proteobacteria of the Genus Asaia Dominate the Microflora of An. stephensi
51(2)
Asaia is Localized in Different Organs of An stephensi
53(2)
Asaia: A Self-Spreading Carrier of Potential Antagonistic Factors in Mosquitoes
55(1)
Conclusions and Perspectives
56(4)
Proposed Uses of Transposons in Insect and Medical Biotechnology
60(11)
Peter W. Atkinson
Introduction
60(3)
Genetic Control Strategies and Transposon Immobility
63(1)
Transformation Efficiency
63(2)
Target Site Preference
65(1)
Post Integration Stability
65(1)
Regulation of Transposition by piRNA
66(1)
Genetic Control Strategies and Transposon Drive
67(1)
Conclusions
68(3)
The Yin and Yang of Linkage Disequilibrium: Mapping of Genes and Nucleotides Conferring Insecticide Resistance in Insect Disease Vectors
71(13)
William C. Black IV
Norma Gorrochetegui-Escalante
Nadine P. Randle
Martin J. Donnelly
Abstract
71(1)
Mapping of Genome Regions and SNPs Conferring Insecticide Resistance
72(1)
Terminology in Linkage Disequilibrium and QTN Mapping
73(1)
Measuring Linkage Disequilibrium
73(1)
Patterns of Linkage Disequilibrium in Vectors
74(3)
The Yin and Yang of Linkage Disequilibrium
77(1)
QTL Mapping
78(1)
Microarray Technology
79(5)
Impact of Technological Improvements on Traditional Control Strategies
84(9)
Mark Q. Benedict
Alan S. Robinson
Introduction
84(1)
Applications
85(5)
Are Transgenic Insects Compatible Partners in the IPM Mix?
90(1)
Conclusions
90(3)
Insect Population Suppression Using Engineered Insects
93(11)
Luke Alphey
Derric Nimmo
Sinead O'Connell
Nina Alphey
Introduction
93(2)
Genetic Sexing and Genetic Sterilization
95(5)
Molecular Biology of Repressible Lethal Systems
100(1)
Regulatory Issues and Concluding Remarks
100(4)
Wolbachia-Based Technologies For Insect Pest Population Control
104(10)
Kostas Bourtzis
Introduction
104(1)
Wolbachia Induced Cytoplasmic Incompatibility
105(1)
Wolbachia-Based Applications
106(3)
Conclusions and Future Challenges
109(5)
Using Predictive Models To Optimize Wolbachia-Based Strategies For Vector-Borne Disease Control
114(12)
Jason L. Rasgon
Introduction
114(1)
Wolbachia Endosymbionts
115(3)
More Realistic Population Dynamics of Wolbachia Infections
118(1)
Can Modelling Highlight a Better Way to Control Disease Using Wolbachia Infections?
119(3)
Using Wolbachia to Drive Nuclear Traits?
122(2)
Conclusions
124(2)
Modifying Insect Population Age Structure To Control Vector-Borne Disease
126(15)
Peter E. Cook
Conor J. McMeniman
Scott L. O'Neill
Introduction
126(1)
Entomological Components of Pathogen Transmission
127(1)
Wolbachia Pipientis
128(1)
Life-Shortening Wolbachia
128(1)
Experimental Transfer of Wolbachia into Disease Vectors
129(1)
Temperature and the Impact of Life-Shortening Wolbachia
130(1)
Molecular Basis of Life-Shortening in wMelPop
131(1)
Entomopathogenic Fungi
132(1)
Densonucleosis Viruses
132(1)
Evaluating of the Efficacy of Strategies Targeting Vector Longevity
133(1)
Evolutionary Consequences of Strategies That Reduce Vector Longevity
134(1)
Conclusion
135(6)
Technological Advances To Enhance Agricultural Pest Management
141(10)
Thomas A. Miller
Carol R. Lauzon
David J. Lampe
Introduction
141(1)
Sterile Insect Technique
142(1)
Symbiosis and Pierce's Disease
143(1)
Bacterial Transgenesis and the Suppression of Horizontal Gene Transfer
144(1)
Anti-Xylella Factors
144(1)
Ecological Microbiology
145(1)
Regulatory Issues
146(2)
Conclusions
148(3)
Applications Of Mosquito Ecology For Successful Insect Transgenesis-Based Disease Prevention Programs
151(18)
Thomas w. Scott
Laura C. Harrington
Bart G. J. Knols
Willem Takken
Introduction
151(1)
Mating Behavior and Male Biology
152(6)
Assessing Fitness
158(1)
Population Biology
159(2)
Regulatory Issues
161(1)
Conclusions
162(7)
Index 169