Atnaujinkite slapukų nuostatas

Transport of Energetic Electrons in Solids: Computer Simulation with Applications to Materials Analysis and Characterization [Kietas viršelis]

  • Formatas: Hardback, 146 pages, aukštis x plotis: 235x155 mm, weight: 409 g, 58 black & white illustrations, biography
  • Serija: Springer Tracts in Modern Physics 257
  • Išleidimo metai: 20-Feb-2014
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319038826
  • ISBN-13: 9783319038827
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 146 pages, aukštis x plotis: 235x155 mm, weight: 409 g, 58 black & white illustrations, biography
  • Serija: Springer Tracts in Modern Physics 257
  • Išleidimo metai: 20-Feb-2014
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319038826
  • ISBN-13: 9783319038827
Kitos knygos pagal šią temą:
This book explores electron-solid interaction via the Monte Carlo technique, presenting physical problems related to the transport of hot electrons in solid targets. Validates numerical and theoretical results via comparison with experimental results.

This book presents the potential of the Monte Carlo (MC) technique to solve mathematical and physical problems of great complexity. This book focusses on the study of the electron-solid interaction (transport MC) and presents some physical problems related to the transport of hot electrons in solid targets using transport MC. The numerical and theoretical results are validated through a comparison with experimental results. The author also addresses methodological aspects. In particular, systematic comparisons among different calculation schemes are presented. Different expressions for the calculation of cross sections and/or stopping power and different simulation methods are described and discussed.
1 Electron Transport in Solids
1(8)
1.1 Electron-Beam Interactions with Solids
1(2)
1.2 Electron Energy-Loss Peaks
3(2)
1.3 Auger Electron Peaks
5(1)
1.4 Secondary Electron Peak
5(1)
1.5 Characterization of Materials
5(1)
1.6 Summary
6(1)
References
7(2)
2 Cross-Sections: Basic Aspects
9(6)
2.1 Cross-Section and Probability of Scattering
10(1)
2.2 Stopping Power and Inelastic Mean Free Path
11(1)
2.3 Range
12(1)
2.4 Energy Straggling
13(1)
2.5 Summary
14(1)
References
14(1)
3 Scattering Mechanisms
15(28)
3.1 Elastic Scattering
16(6)
3.1.1 Mott Cross-Section Versus Screened Rutherford Cross-Section
17(5)
3.2 Quasi-Elastic Scattering
22(1)
3.2.1 Electron-Phonon Interaction
22(1)
3.3 Inelastic Scattering
23(12)
3.3.1 Stopping: Bethe-Bloch Formula
24(1)
3.3.2 Stopping: Semi-empiric Formulas
24(1)
3.3.3 Dielectric Theory
25(4)
3.3.4 Sum of Drude Functions
29(5)
3.3.5 Polaronic Effect
34(1)
3.4 Inelastic Mean Free Path
35(1)
3.5 Surface Phenomena
35(4)
3.6 Summary
39(4)
References
40(3)
4 Random Numbers
43(6)
4.1 Generating Pseudo-Random Numbers
43(1)
4.2 Testing Pseudo-Random Number Generators
44(1)
4.3 Pseudo-Random Numbers Distributed According to a Given Probability Density
44(1)
4.4 Pseudo-Random Numbers Uniformly Distributed in the Interval [ a, b]
45(1)
4.5 Pseudo-Random Numbers Distributed According to the Poisson Density of Probability
45(1)
4.6 Pseudo-Random Numbers Distributed According to the Gauss Density of Probability
46(1)
4.7 Summary
47(2)
References
47(2)
5 Monte Carlo Strategies
49(16)
5.1 The Continuous-Slowing-Down Approximation
50(3)
5.1.1 The Step-Length
50(1)
5.1.2 Interface Between Over-Layer and Substrate
50(1)
5.1.3 The Polar Scattering Angle
51(1)
5.1.4 Direction of the Electron After the Last Deflection
51(1)
5.1.5 The Energy Loss
52(1)
5.1.6 End of the Trajectory and Number of Trajectories
53(1)
5.2 The Energy-Straggling Strategy
53(9)
5.2.1 The Step-Length
53(1)
5.2.2 Elastic and Inelastic Scattering
54(1)
5.2.3 Electron-Electron Collisions: Scattering Angle
55(2)
5.2.4 Electron-Phonon Collisions: Scattering Angle
57(1)
5.2.5 Direction of the Electron After the Last Deflection
57(1)
5.2.6 Transmission Coefficient
58(2)
5.2.7 Inelastic Scattering Linkage to the Distance from the Surface
60(2)
5.2.8 End of the Trajectory and Number of Trajectories
62(1)
5.3 Summary
62(3)
References
62(3)
6 Backscattering Coefficient
65(16)
6.1 Electrons Backscattered from Bulk Targets
65(3)
6.1.1 The Backscattering Coefficient of C and Al Calculated by Using the Dielectric Theory (Ashley Stopping Power)
66(1)
6.1.2 The Backscattering Coefficient of Si, Cu, and Au Calculated by Using the Dielectric Theory (Tanuma et al. Stopping Power)
66(2)
6.2 Electrons Backscattered from One Layer Deposited on Semi-infinite Substrates
68(3)
6.2.1 Carbon Overlayers (Ashley Stopping Power)
69(1)
6.2.2 Gold Overlayers (Kanaya and Okayama Stopping Power)
70(1)
6.3 Electrons Backscattered from Two Layers Deposited on Semi-infinite Substrates
71(4)
6.4 A Comparative Study of Electron and Positron Backscattering Coefficients and Depth Distributions
75(3)
6.5 Summary
78(3)
References
78(3)
7 Secondary Electron Yield
81(12)
7.1 Secondary Electron Emission
82(1)
7.2 Monte Carlo Approaches to the Study of Secondary Electron Emission
82(1)
7.3 Specific MC Methodologies for SE Studies
83(2)
7.3.1 Continuous-Slowing-Down Approximation (CSDA Scheme)
83(1)
7.3.2 Energy-Straggling (ES Scheme)
84(1)
7.4 Secondary Electron Yield: PMMA and Al2O3
85(6)
7.4.1 Secondary Electron Emission Yield as a Function of the Energy
85(1)
7.4.2 Comparison Between ES Scheme and Experiment
85(1)
7.4.3 Comparison Between CSDA and ES Schemes
86(2)
7.4.4 Comparison Between CSDA Scheme and Experiment
88(1)
7.4.5 CPU Time
89(2)
7.5 Summary
91(2)
References
91(2)
8 Electron Energy Distributions
93(14)
8.1 Monte Carlo Simulation of the Spectrum
93(2)
8.2 Plasmon Losses and Electron Energy Loss Spectroscopy
95(2)
8.2.1 Plasmon Losses in Graphite
95(1)
8.2.2 Plasmon Losses in Silicon Dioxide
96(1)
8.3 Energy Losses of Auger Electrons
97(2)
8.4 Elastic Peak Electron Spectroscopy
99(1)
8.5 Secondary Electron Spectrum
100(4)
8.5.1 Initial Polar and Azimuth Angle of the SEs
101(1)
8.5.2 Comparison with Theoretical and Experimental Data
101(3)
8.6 Summary
104(3)
References
104(3)
9 Applications
107(10)
9.1 Linewidth Measurement in Critical Dimension SEM
107(4)
9.1.1 Nanometrology and Linewidth Measurement in CD SEM
107(1)
9.1.2 Lateral and Depth Distributions
108(1)
9.1.3 Secondary Electron Yield as a Function of the Angle of Incidence
109(1)
9.1.4 Linescan of a Silicon Step
110(1)
9.1.5 Linescan of PMMA Lines on a Silicon Substrate
111(1)
9.2 Application to Energy Selective Scanning Electron Microscopy
111(3)
9.2.1 Doping Contrast
112(1)
9.2.2 Energy Selective Scanning Electron Microscopy
113(1)
9.3 Summary
114(3)
References
115(2)
10 Appendix A: Mott Theory
117(6)
10.1 Relativistic Partial Wave Expansion Method
117(2)
10.2 Analytic Approximation of the Mott Cross-Section
119(1)
10.3 The Atomic Potential
120(1)
10.4 Electron Exchange
121(1)
10.5 Solid-State Effects
121(1)
10.6 Positron Differential Elastic Scattering Cross-Section
122(1)
10.7 Summary
122(1)
References
122(1)
11 Appendix B: Frohlich Theory
123(12)
11.1 Electrons in Lattice Fields: Interaction Hamiltonian
123(3)
11.2 Electron-Phonon Scattering Cross-Section
126(7)
11.3 Summary
133(2)
References
133(2)
12 Appendix C: Ritchie Theory
135(6)
12.1 Energy Loss and Dielectric Function
135(3)
12.2 Homogeneous and Isotropic Solids
138(1)
12.3 Summary
139(2)
References
140(1)
13 Appendix D: Chen and Kwei and Li et al. Theory
141(4)
13.1 Outgoing and Incoming Electrons
141(1)
13.2 Probability of Inelastic Scattering
142(1)
13.3 Summary
143(2)
References
143(2)
Index 145