Atnaujinkite slapukų nuostatas

El. knyga: Trapping of Small Organisms Moving Randomly: Principles and Applications to Pest Monitoring and Management

  • Formatas: PDF+DRM
  • Serija: SpringerBriefs in Ecology
  • Išleidimo metai: 31-Mar-2015
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319129945
  • Formatas: PDF+DRM
  • Serija: SpringerBriefs in Ecology
  • Išleidimo metai: 31-Mar-2015
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319129945

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This new book is the first to make logical and important connections between trapping and foraging ecology. It develops and describes—both verbally and mathematically--the underlying principles that determine and define trap-organism interactions. More important, it goes on to explain and illustrate how these principles and relationships can be used to estimate absolute population densities in the landscape and to address an array of important problems relating to the use of trapping for detection, population estimation, and suppression in both research and applied contexts. The breakthrough nature of subject matter described has broad fundamental and applied implications for research for addressing important real-world problems in agriculture, ecology, public health and conservation biology. Monitoring traps baited with potent attractants of animals like insects have long played a critical role in revealing what pests are present and when they are active. However, pest managers have been laboring without the tools necessary for quick and inexpensive determination of absolute pest density, which is the cornerstone of pest management decisions. This book spans the gamut from highly theoretical and fundamental research to very practical applications that will be widely useful across all of agriculture.
1 Why Care About Trapping Small Organisms Moving Randomly?
1(6)
1.1 Most Animals Are Small and Forage Using Simple Behavioral Rules
1(1)
1.2 The Most Serious Animal Pests Are Small
1(1)
1.3 Responsible Pest Management Decisions Require Knowledge of Pest Numbers
2(1)
1.4 Current Methods of Estimating Absolute Densities of Pests Are Prohibitively Costly
2(2)
1.5 Can Traps and Trapping Fill This Need?
4(1)
1.6 Aims and Approach of This Book
5(2)
2 Trap Function and Overview of the Trapping Process
7(8)
2.1 Definition and Functions of Traps
7(1)
2.2 Overview of the Trapping Process
8(7)
3 Random Displacement in the Absence of Cues
15(10)
3.1 The Classical Random Walk
15(1)
3.2 The Correlated Random Walk
16(1)
3.3 Outward Dispersion as Influenced by c.s.d.
17(2)
3.4 Outward Dispersion as Influenced by Time
19(1)
3.5 Does a Population of Random Walkers Spread Indefinitely Away from the Point of Origin and, If So, Why?
20(1)
3.6 Maximum Net Outward Dispersion as Influenced by Mover Sample Size
20(1)
3.7 Patterns in Random-Walker Ending Positions After a Short Period of Dispersion as Influenced by c.s.d.
21(1)
3.8 Experimental Analyses of Tracks and Measures of Meander for Individuals
22(3)
4 Intersections of Movers with Traps
25(14)
4.1 Ballistic Movers---The Simplest Case
25(1)
4.2 Random Walkers
26(3)
4.3 Gain as Influenced by c.s.d. and Run Time
29(1)
4.4 Optimal c.s.d. as Influenced by Trap or Resource Size
30(2)
4.5 What Aspect of Plume Geometry Correlates Best with Capture Probability?
32(1)
4.6 Contrasts of Ellipsoid Plumes with Discoid Plumes
33(3)
4.7 Setting the Stage for Estimating Plume Reach from Field Experiments Measuring spTfer
36(3)
5 Interpreting Catch in a Single Trap
39(28)
5.1 A Simple Trapping Equation
39(1)
5.2 Converting spTfer into Tfer
39(2)
5.3 From Where Does most of the Catch Accumulating in a Trap Originate?
41(4)
5.4 Preparing to Put Eq. (5.1) to Work
45(2)
5.5 Measures of Variation around Estimates of Absolute Animal Density Derived from Trapping
47(1)
5.6 Examples of Eq. 5.1 at Work
48(15)
5.7 Patterns in Tfer Values and Plume Reaches for Organisms Displacing Randomly
63(1)
5.8 This Single Trap Approach is Ready for Testing and Implementation Where Proven Reliable
63(2)
5.9 A Caveat
65(2)
6 Competing Traps
67(18)
6.1 Definition of Trap Competition
67(1)
6.2 Complete Competition
67(1)
6.3 Test for Whether or Not Competition is Complete
68(2)
6.4 Incomplete Competition
70(3)
6.5 Trapping Radius Does Not Equate to Competition Threshold
73(1)
6.6 Equation for Incompletely Competing Traps
73(6)
6.7 Estimating Mover Numbers and Trapping Area Simultaneously by Competitive Trapping
79(3)
6.8 Computer Simulations Demonstrating How Absolute Density of Biological Random Walkers Can Be Estimated by Competitive Trapping under Variable Run Times
82(2)
6.9 Suggested Plan for Employing Competitive Trapping Under Field Conditions
84(1)
6.10 Summary
84(1)
7 Experimental Method for Indirect Estimation of c.s.d. for Random Walkers via a Trapping Grid
85(4)
7.1 The Idea
85(1)
7.2 Translation of the Idea to Field Tests with Real Organisms
86(3)
8 Trapping to Achieve Pest Control Directly
89(14)
8.1 The Idea
89(1)
8.2 Time-Dependency and Dynamics of Mass Trapping
89(1)
8.3 Damage Suppression as Influenced by Trap Number and Spacing: Simulations
90(7)
8.4 Examples of Successful Pest Control by Mass Trapping
97(3)
8.5 New Approaches to Mass Trapping
100(3)
9 Automated Systems for Recording, Reporting, and Analyzing Trapping Data
103(8)
9.1 Need for Such Systems
103(1)
9.2 History of Insect Trap Automation
103(4)
9.3 Recent Developments and Future Prospects
107(2)
9.4 Wrap-Up
109(2)
References 111
Dr. James R. Miller serves as Distinguished Professor of Entomology at Michigan State University. Dr. Millers research centers on insect reproductive physiology, behavior, and chemical ecology. Current basic research projects address mechanisms of moth pheromone disruption, sensory physiology of pheromone reception and host-plant acceptance by herbivorous Diptera.