Atnaujinkite slapukų nuostatas

El. knyga: True Triaxial Testing of Rocks [Taylor & Francis e-book]

Edited by (Geological Survey of Japan, Tsukuba, Japan), Edited by , Edited by (Silesian University of Technology, Gliwice, Poland)
  • Formatas: 384 pages, 240 Illustrations, black and white
  • Serija: Geomechanics Research Series
  • Išleidimo metai: 06-Aug-2012
  • Leidėjas: CRC Press
  • ISBN-13: 9780429217296
Kitos knygos pagal šią temą:
  • Taylor & Francis e-book
  • Kaina: 304,67 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Standartinė kaina: 435,24 €
  • Sutaupote 30%
  • Formatas: 384 pages, 240 Illustrations, black and white
  • Serija: Geomechanics Research Series
  • Išleidimo metai: 06-Aug-2012
  • Leidėjas: CRC Press
  • ISBN-13: 9780429217296
Kitos knygos pagal šią temą:
One of several scientific events leading up to the 12th International Congress of Rock Mechanics, the workshop provided a forum for reviewing and summarizing the most recent experience and knowledge in true triaxial testing techniques and the mechanical behavior of rocks under general triaxial loading conditions. The 28 papers cover the areas of true triaxial testing techniques and procedures; test results: strength, deformity, failure mode, permeability, acoustic emission, and elastic wave velocity; failure mechanisms and failure criteria; applications to geoengineering and geosciences; and miscellaneous topics. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)

This is the first book ever published on the problems of true triaxial testing of rocks addressing all aspects of true triaxial testing of rocks, including: (i) true triaxial testing techniques and procedures; (ii) test results: strength, deformability, failure mode, permeability, acoustic emission, and elastic wave velocity; (iii) constitutive laws and failure criteria; and (iv) applications to geoengineering and geosciences.

Recent developments in the field of true triaxial testing of rocks are presented, as well as a thorough review of the most important achievements in the whole history of true triaxial testing of rocks.

Almost all researchers from around the world engaged in the true triaxial testing of rocks over the last three decades have contributed to this work. The authors originate from different branches of geoengineering and geosciences, including civil engineering, engineering geology, geotechnical engineering, mining engineering, petroleum engineering, seismology, and tectonophysics.

Preface xv
Section 1 True triaxial testing techniques and procedures
1 True-triaxial testing techniques for rocks State of the art and future perspectives
3(16)
X. Li
L. Shi
B. Bai
Q. Li
D. Xu
X. Feng
1 Introduction
3(2)
2 Development history of true triaxial test techniques for testing rocks S
2.1 Types of TTT apparatuses
5(1)
2.2 Type-I: Rigid platen type
6(1)
2.3 Type-II: Flexible medium type
7(1)
2.4 Type-Ill: Mixed type
8(1)
2.5 Comparison of various kinds of TTT apparatuses
9(1)
3 True-triaxial rock testing techniques in China
10(4)
3.1 Development and application of TTT apparatuses for rocks in China
10(2)
3.2 Newly developed TTT apparatuses for rocks in China
12(2)
4 Problems and future perspectives of TTT for rocks
14(2)
4.1 Problems
14(1)
4.2 Future perspectives
15(1)
5 Conclusions
16(3)
2 Numerical analysis of loading boundary effects in Mogi-type true triaxial tests
19(16)
L. Shi
X. Li
B. Bai
Q. Li
X. Feng
1 Introduction
19(1)
2 Influence of platen thickness
20(3)
2.1 Numerical model
20(1)
2.2 Results and discussion
21(2)
3 Influence of loading eccentricity
23(1)
4 Influence of the end friction effect
24(4)
4.1 Introduction of the end friction effect
24(1)
4.2 Numerical scheme and associated parameters
25(1)
4.3 Results and discussion
26(2)
5 Influence of the corner effect
28(4)
5.1 Influence on the uniform distribution of stress
28(1)
5.2 Influence on the failure surface
28(4)
6 Conclusions
32(3)
3 Design and development of integrated true triaxial rock testing system
35(16)
L. Lombos
D.W. Roberts
M.S. King
1 Introduction
35(1)
2 Polyaxial imaging cell
35(1)
2.1 Mechanical/hydraulic requirements
36(1)
2.2 Electrical/electronic requirements
36(1)
2.3 Additional requirements
36(1)
3 Integrated true triaxial rock testing system
36(13)
3.1 Polyaxial Test (PAT) Rig or True Triaxial Loading Frame
36(1)
3.2 Polyaxial Imaging Cell---True Triaxial Test Cell-Geophysical Imaging Cell "B"
37(12)
4 Conclusions
49(2)
4 The FPMs (UMons-Belgium) device for investigating the mechanical behavior of materials subjected to true triaxial compression
51(10)
J.-P. Tshibangu
F. Descamps
1 Introduction
51(1)
2 Description of the FPMs true triaxial or polyaxial cell
51(1)
3 Test control and stress/strain paths
52(2)
3.1 General presentation
52(1)
3.2 Stress path control
53(1)
3.3 Strain path control
54(1)
3.4 Creep test
54(1)
4 Interpretation of the data obtained from compressive tests
54(2)
4.1 Processing of the stress-strain data
54(1)
4.2 Building 3D envelopes
55(1)
5 Selected results for several rock materials
56(1)
5.1 Rock materials
56(1)
5.2 Identifying the behavior of a rock material
56(1)
5.3 Mechanical characteristics and evolution with respect to confining stresses
57(1)
6 Plastic behavior and limiting envelopes
57(2)
6.1 Hardening and dilatancy
57(1)
6.2 Evolution of hardening on the octahedral plane
57(2)
7 Conclusions
59(2)
5 Study of the failure and deformability of jointed rock masses using large rock block specimens
61(12)
K. Suzuki
1 Introduction
61(1)
1.1 Scope
61(1)
1.2 Specimen size---Representative Elementary Volume
61(1)
2 Shear test of large rock block specimens
62(2)
2.1 Apparatus---Multipurpose Testing Machine for rock masses
62(1)
2.2 Sampling method
63(1)
2.3 Rock block specimen
63(1)
2.4 Method of testing
63(1)
3 Test results and discussion
64(6)
3.1 Strength properties
64(3)
3.2 Deformational properties
67(1)
3.3 Similarity rule of joint geometry in terms of crack tensor
67(3)
4 Conclusions
70(3)
6 The hollow cylinder test as an alternative to true triaxial loading of prismatic rock specimens
73(10)
C. Dinis da Gama
1 Introduction
73(1)
2 Equipment and tests
73(4)
3 Interpretation of the results obtained
77(2)
4 Comparisons with Triaxial tests
79(3)
5 Conclusions
82(1)
7 Design and fabrication of a low cost true triaxial cell for testing multiple size specimens
83(16)
A.K. Schwartzkopff
S. Priest
N. Melkoumian
J.A. Egudo
1 Introduction
83(1)
2 Problem definition
83(1)
3 Preliminary design
83(1)
4 Sourcing hydraulic jacks
84(1)
5 Challenges of the true triaxial cell
84(4)
5.1 Design challenges
84(4)
5.2 Manufacturing challenges
88(1)
5.3 Implementation challenges
88(1)
6 Development of engineering plans
88(1)
6.1 Strengths of software
88(1)
6.2 Input parameters
88(1)
7 Manufacture
88(1)
8 Design and assembly of hydraulics
89(1)
9 Practical use of the cell
90(3)
9.1 Calibration of hydraulics
90(1)
9.2 Calibration of the strains on the true triaxial cell under load
90(3)
10 True triaxial testing
93(6)
10.1 Specimen rock type
93(1)
10.2 Test results
93(6)
Section 2 Test results: Strength, deformability, failure mode, permeability, acoustic emission, elastic wave velocity, ...
8 Mechanical behavior of rocks under true triaxial compression conditions---A review
99(40)
M. Kwasniewski
1 Introduction
99(6)
2 True triaxial compression tests on cubic and rectangular prismatic samples
105(3)
2.1 True triaxial compression tests using solid pistons
105(1)
2.2 Compression tests using fluid membranes (flat-jacks)
106(1)
2.3 Compression tests using solid pistons and oil pressure
107(1)
3 Review of the true triaxial test results
108(9)
4 Strength of rocks under true triaxial compression conditions
117(14)
4.1 Mogi's failure hypothesis
117(1)
4.2 Review of the empirical data on true triaxial strength of rocks
118(13)
5 Summary and final remarks
131(8)
9 How I developed a true triaxial rock testing machine
139(20)
K. Mogi
1 Introduction
139(1)
2 Experimental research at MIT
140(1)
3 Development of the Mogi-type true triaxial machine
140(8)
3.1 Uniaxial compressive strength and sample shape
140(1)
3.2 Axial compressive strength and fracture angle under various confining pressures
141(7)
4 Design and construction of the Mogi-type triaxial testing machine
148(3)
5 Summary of experimental results
151(8)
10 True triaxial testing reveals hitherto unknown rock mechanical properties
159(8)
B. Haimson
1 Introduction
159(1)
2 Compressive strength
160(1)
3 Strength criterion
160(1)
4 Failure modes
161(1)
5 Fault angle and direction
162(1)
6 Dilatancy
163(1)
7 Micromechanical features of brittle failure under TTT
164(1)
8 Brief discussion
164(3)
11 Imaging the effect of the intermediate principal stress on strength, deformation and transport properties of rocks using seismic methods
167(14)
R.P. Young
M.H.B. Nasseri
L. Lombos
1 Introduction
167(2)
1.1 Effect of intermediate principal stress
167(1)
1.2 Rock Fracture Dynamic Facility (RFDF)
168(1)
2 Experimental set up and testing procedure
169(3)
2.1 Sample preparation for true triaxial experiment
169(1)
2.2 True triaxial geophysical imaging cell (TTGIC)
170(1)
2.3 MTS polyaxial testing machine
171(1)
2.4 Permeability and rubber membrane skeleton---MM seal pressure system
171(1)
2.5 Ultrasonic wave velocity and acoustic emission
172(1)
3 Results and discussion
172(6)
3.1 True triaxial strength and deformational responses
172(1)
3.2 Evolution of 3D ultrasonic wave velocities with true triaxial stresses
173(2)
3.3 Acoustic emission data processing, AE hits and locations
175(1)
3.4 3D directional permeability of Fontainebleau sandstone
176(2)
4 Conclusions
178(3)
12 Mechanical characteristics of rock salt determined using the Absolute Triaxial Testing (ATT) machine
181(12)
S. Sakurai
S. Serata
1 Introduction
181(1)
2 Absolute Triaxial Testing (ATT)
182(2)
2.1 ATT machine
182(1)
2.2 Specimens
182(1)
2.3 Measuring devices
183(1)
3 Testing procedure
184(1)
3.1 Stress-strain relationship
184(1)
3.2 Yielding stress
184(1)
3.3 Failure stress
184(1)
3.4 Creep tests
184(1)
4 Experimental results
184(5)
4.1 Yielding stress condition
184(2)
4.2 Failure stress condition
186(1)
4.3 Failure stress condition under two different confinement stresses
186(2)
4.4 Time-dependent characteristics of rock salt
188(1)
5 Failure criterion
189(2)
5.1 Octahedral shearing stress
189(1)
5.2 Triaxial testing results
189(1)
5.3 Proposed failure criterion
190(1)
6 Conclusions and final remarks
191(2)
13 Seismic wave velocity anisotropy in Westerly granite under a true triaxial compression test
193(10)
M. Takahashi
1 Introduction
193(1)
2 Previous experiments under general stress state
194(1)
3 The true triaxial testing system and measurement methods of seismic wave velocity
195(1)
4 Experimental results
196(2)
5 Discussion
198(4)
6 Conclusions
202(1)
14 Deformation and strength characteristics of Kimachi sandstone under confined compression and extension test conditions
203(10)
N. Takahashi
M. Takahashi
H. Park
Y. Fujii
T. Takemura
1 Introduction
203(1)
2 Experimental procedure
204(3)
2.1 Testing material
204(1)
2.2 Apparatus
204(1)
2.3 Testing method
205(2)
3 Results and discussion
207(2)
3.1 Stress-strain relationships
207(1)
3.2 Comparison of strength between compression and extension lest conditions
207(1)
3.3 Comparison of volumetric strain at failure between compression and extension test conditions
208(1)
4 Conclusions
209(4)
Section 3 Failure mechanisms and failure criteria
15 Estimating the parameters for a three-dimensional failure criterion for rocks from a single test
213(10)
P. V. Lade
1 Introduction
213(3)
2 Three-dimensional failure criterion
216(1)
3 Tensile strength of rocks
217(1)
4 Parameter determination
218(1)
5 Parameter values for rocks
218(2)
6 Parameters from a single test
220(2)
7 Conclusions
222(1)
16 A new failure criterion for transversely isotropic rocks and its validation against true triaxial tests
223(12)
J. Pei
H. H. Einstein
1 Introduction
223(1)
2 Experimental observations
224(1)
3 The Anisotropic Matsuoka-Nakai (AMN) criterion
225(5)
3.1 The Normal Stress Space
225(1)
3.2 The original Matsuoka-Nakai criterion
226(2)
3.3 The Anisotropic Matsuoka-Nakai criterion
228(2)
4 Validation of the AMN criterion
230(3)
5 Conclusions
233(2)
17 Stress path dependency of failure mechanism from the viewpoint of dilatant behavior
235(8)
T. Takemura
K. Suzuki
A. Golshani
M. Takahashi
1 Introduction
235(1)
2 Testing material and procedure
236(2)
3 Results
238(2)
4 Discussion and concluding remarks
240(3)
18 Weakness plane model to simulate effects of stress states on rock strengths
243(8)
Y. Fujii
1 Introduction
243(1)
2 Weakness plane model
243(2)
3 True triaxial test
245(1)
4 Uniaxial tension and Brazilian tests
246(1)
5 Extension test
246(2)
6 Concluding remarks
248(3)
Section 4 Applications to geoengineering and geosciences
19 A modified true triaxial test system that allows a specimen to be unloaded on one surface
251(16)
M.C. He
X.N. Jia
W.L. Gong
G.J. Liu
F. Zhao
1 Introduction
251(1)
2 The mechanism of rockbursts and experimental setup
252(3)
2.1 The mechanism of rockbursts
252(1)
2.2 Functions and requirements of the experimental setup
252(3)
3 Rockburst experiment system for single face unloading
255(1)
4 Information measuring system for rockburst experiments
256(2)
4.1 Data acquisition system
256(1)
4.2 Acoustic emission monitoring system
256(1)
4.3 High-speed image recording system
256(1)
4.4 Infrared thermal monitoring system
257(1)
5 Experimental result analyses
258(6)
5.1 Distribution of rockburst sampling sites
258(2)
5.2 Characteristics of the unloading rate on a single surface
260(1)
5.3 Rockburst time and rockburst classification
261(1)
5.4 Analysis of the typical results of rockburst tests
261(3)
6 Conclusions
264(3)
20 Seismic quiescence and foreshock activity preceding the 2007 Niigata-ken Chuetsu-oki earthquake (M6.8) in Japan
267(14)
K. Mogi
1 Introduction
267(1)
2 Long term earthquake forecasting
267(1)
3 Precursory seismicity before the 2007 main shock
268(7)
3.1 Previous findings
269(2)
3.2 Seismic quiescence
271(1)
3.3 Foreshock activity
272(3)
4 Discussion (predictive information)
275(1)
5 The Kashiwazaki-Kariwa nuclear power plants and the 2007 Chuetsu-oki earthquake (M6.8)
276(1)
6 Conclusions
277(4)
Appendix 1 Search for seismic quiescence
278(2)
Appendix 2
280(1)
21 Stress state of the on the mechanical behavior of coals under true triaxial compression conditions
281(12)
A.D. Alexeev
V.N. Revva
A. V. Molodetski
1 Introduction
281(1)
2 Methods and materials
282(1)
3 Results and discussion
282(9)
3.1 Alteration in the mechanical performance of coals in different stress states
282(3)
3.2 The effect of the stress state on methane emission kinetics from coals
285(2)
3.3 The effect of moisture content on the mechanical performance of coals
287(4)
4 Conclusions
291(2)
22 Experimental study of wellbore deformation in a deep claystone formation
293(8)
Y. Lu
M. Chen
Y. Jin
P. Yang
Z. Xie
J. Yuan
K. Fan
1 Introduction
293(1)
2 Preparation of the experimental apparatus
294(1)
3 Apparatus for measuring wellbore deformation and the triaxial loading system
295(1)
4 Analysis of testing results
296(1)
5 Conclusions
296(5)
23 Triaxial loading system as a tool for solving geotechnical problems of oil and gas production
301(10)
V. Karev
Yu. Kovalenko
1 Study of the effect of stress-strain behavior on rock permeability
301(6)
1.1 Description of the apparatus
301(4)
1.2 Findings of the experimental study of the effect of stress-strain behavior on the filtration properties of rocks
305(2)
2 Directional and horizontal wellbore stabilization
307(3)
3 Conclusions
310(1)
24 A true triaxial stress cell (TTSC) used for simulations of real Held operations in the lab
311(12)
V. Rasouli
1 Introduction
311(1)
2 Features of the TTSC
312(1)
3 Experiment examples using the TTSC
313(5)
3.1 Hydraulic fracturing
313(2)
3.2 Sanding analysis
315(1)
3.3 Fracture shear test
316(2)
4 Conclusions
318(5)
Section 5 Miscellaneous
25 Fractographical analysis of the failure surfaces from triaxial extension tests on Kimachi sandstone
323(8)
Y. Fujii
N. Takahashi
M. Takahashi
T. Takemura
H. Park
1 Introduction
323(1)
2 Test specimens and method
324(1)
2.1 Geology of the Kimachi sandstone
324(1)
2.2 Testing method
324(1)
3 Test results
324(1)
4 Fracture surface measurement using digital photogrammetry
325(3)
4.1 Digital photogrammetry
325(1)
4.2 Application to fracture surfaces
326(1)
4.3 Shear fracture angle
327(1)
4.4 Roughness of tensile fracture
327(1)
5 Discussion
328(1)
5.1 Formation of shear fracture
328(1)
5.2 Formation of tensile fracture
328(1)
6 Summary and conclusions
329(2)
26 Energy conversion and damage evolution of rocks under cyclic loading conditions
331(12)
R.D. Peng
Y. Ju
H. Xie
L.Y. Li
1 Introduction
331(1)
2 Thermodynamic analysis during rock deformation and failure
332(5)
2.1 Energy conversion and thermodynamic state
333(2)
2.2 Rock damage and energy dissipation
335(2)
3 Testing program
337(1)
3.1 Rock samples and testing machine
337(1)
3.2 Loading procedure
337(1)
4 Experimental results and discussion
338(2)
4.1 Energy dissipation
338(1)
4.2 Rigidity degradation
338(1)
4.3 Damage evolution and failure criterion
339(1)
5 Conclusions
340(3)
27 Superbrittle failure regime of rocks at conventional triaxial compression
343(8)
B. Tarasov
1 Introduction
343(1)
2 Brittleness variation with confining pressure for rocks of different stiffness
344(2)
3 Mechanism of rock embrittlement at high confining pressure
346(3)
4 Conclusions
349(2)
28 Depth-dependent mechanical parameters of basalt: An experimental study
351(12)
H. W. Zhou
J.P. Zua
D.J. Xue
H. Xie
J.F. Liu
1 Introduction
351(1)
2 Description of laboratory experiments
352(2)
2.1 Sampling and sample preparation
352(1)
2.2 Testing system
353(1)
2.3 Experimental procedure
353(1)
3 Experimental results and analysis
354(6)
3.1 Uniaxial compression test results and analysis
354(2)
3.2 Brazilian test results and analysis
356(1)
3.3 Conventional triaxial compression lest results and analysis
357(3)
4 Conclusions
360(3)
Subject index 363(4)
Book series page 367
Marek Kwasniewski, Xiaochun Li, Manabu Takahashi